ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface Majorana Flat Bands in $j=frac{3}{2}$ Superconductors with Singlet-Quintet Mixing

113   0   0.0 ( 0 )
 نشر من قبل Jiabin Yu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent experiments have revealed the evidence of nodal-line superconductivity in half-Heusler superconductors, e.g. YPtBi. Theories have suggested the topological nature of such nodal-line superconductivity and proposed the existence of surface Majorana flat bands on the (111) surface of half-Heusler superconductors. Due to the divergent density of states of the surface Majorana flat bands, the surface order parameter and the surface impurity play essential roles in determining the surface properties. In this work, we studied the effect of the surface order parameter and the surface impurity on the surface Majorana flat bands of half-Heusler superconductors based on the Luttinger model. To be specific, we consider the topological nodal-line superconducting phase induced by the singlet-quintet pairing mixing, classify all the possible translationally invariant order parameters for the surface states according to irreducible representations of $C_{3v}$ point group, and demonstrate that any energetically favorable order parameter needs to break time-reversal symmetry. We further discuss the energy splitting in the energy spectrum of surface Majorana flat bands induced by different order parameters and non-magnetic or magnetic impurities. We proposed that the splitting in the energy spectrum can serve as the fingerprint of the pairing symmetry and mean-field order parameters. Our theoretical prediction can be examined in the future scanning tunneling microscopy experiments.

قيم البحث

اقرأ أيضاً

We show that Cooper pairing can occur intrinsically away from the Fermi surface in $j=3/2$ superconductors with strong spin-orbit coupling and equally curved bands in the normal state. In contrast to conventional pairing between spin-$1/2$ electrons, we derive that pairing can happen between inter-band electrons having different total angular momenta, i.e., $j=1/2$ with $j=3/2$ electrons. Such superconducting correlations manifest themselves by a pair of indirect gap-like structures at finite excitation energies. An observable signature of this exotic pairing is the emergence of a pair of symmetric superconducting coherence peaks in the density of states at finite energies. We argue that finite-energy pairing is a generic feature of high-spin superconductors, both in presence and absence of inversion symmetry.
The diversity of emergent phenomena in quantum materials often arises from the interplay between different physical energy scales or broken symmetries. Cooperative interactions among them are rare; however, when they do occur, they often stabilize fu ndamentally new ground states or phase behaviors. For instance, a pair density wave can form when the superconducting order parameter borrows spatial periodical variation from charge order; a topological superconductor can arise when topologically nontrivial electronic states proximitize with or participate in the formation of the superconducting condensate. Here, we report spectroscopic evidence for a unique synergy of topology and correlation effects in the kagome superconductor CsV$_3$Sb$_5$ - one where topologically nontrivial surface states are pushed below the Fermi energy (E$_F$) by charge order, making the topological physics active near E$_F$ upon entering the superconducting state. Flat bands are observed, indicating that electron correlation effects are also at play in this system. Our results reveal the peculiar electronic structure of CsV$_3$Sb$_5$, which holds the potential for realizing Majorana zero modes and anomalous superconducting states in kagome lattices. They also establish CsV$_3$Sb$_5$ as a unique platform for exploring the cooperation between the charge order, topology, correlation effects and superconductivity.
327 - Lingyuan Kong , Hong Ding 2021
The vortex of iron-based superconductors is emerging as a promising platform for Majorana zero mode, owing to a magic integration among intrinsic vortex winding, non-trivial band topology, strong electron-electron correlations, high-Tc superconductiv ity and the simplification of single material. It overcomes many difficulties suffered in heterostructure-based Majorana platforms, including small topological gap, interfacial contamination, lattice imperfections, and etc. Isolated zero-bias peaks have been found in vortex of several iron-based superconductors. So far, studies from both experimental and theoretical aspects strongly indicate the realization of vortex Majorana zero mode, with a potential to be applied to topological quantum computation. By taking Fe(Te,Se) superconductor as an example, here we review original idea and research progress of Majorana zero modes in this new platform. After introducing the identifications of topological band structure and real zero modes in vortex, we summarize the physics behaviors of vortex Majorana zero modes systematically. Firstly, relying on the behavior of the zero mode wave function and evidence of quasiparticle poisoning, we analyze the mechanism of emergence of vortex Majorana zero modes. Secondly, assisted with some well-established theories, we elaborate the measurements on Majorana symmetry and topological nature of vortex Majorana zero modes. After that, we switch from quantum physics to quantum engineering, and analyze the performance of vortex Majorana zero mode under real circumstances, which may potentially benefit the exploration of practical applications in the future. This review follows the physics properties of vortex Majorana zero modes, especially emphasizes the link between phenomena and mechanisms. It provides a chance to bridge the gap between the well-established theories and the newly discovered iron home of Majoranas.
Majorana quasi-particles may arise as zero-energy bound states in vortices on the surface of a topological insulator that is proximitized by a conventional superconductor. Such a system finds its natural realization in the iron-based superconductor F eTe$_{0.55}$Se$_{0.45}$ that combines bulk $s$-wave pairing with spin helical Dirac surface states, and which thus comprises the ingredients for Majorana modes in absence of an additional proximitizing superconductor. In this work, we investigate the emergence of Majorana vortex modes and lattices in such materials depending on parameters like the magnetic field strength and vortex lattice disorder. A simple 2D square lattice model here allows us to capture the basic physics of the underlying materials system. To address the problem of disordered vortex lattice, which occurs in real systems, we adopt the technique of the singular gauge transformation which we modify such that it can be used in a system with periodic boundary conditions. This approach allows us to go to larger vortex lattices than otherwise accessible, and is successful in replicating several experimental observations of Majorana vortex bound states in the FeTe$_{0.55}$Se$_{0.45}$ platform. Finally it can be related to a simple disordered Majorana lattice model that should be useful for further investigations on the role of interactions, and towards topological quantum computation.
All previous cuprate superconductors display a set of common features: (i) vicinity to a Cu 3$d^{9}$ configuration; (ii) separated CuO$_2$ planes; (iii) superconductivity for doping $delta sim$ 0.1$-$0.3. Recently [PNAS {bf 24}, 12156 (2019)] challen ged this picture by discovering highly overdoped superconducting Ba$_2$CuO$_{3+y}$. Using density-functional theory + dynamical mean-field theory, we reveal a bilayer structure of Ba$_2$CuO$_{3.2}$ of alternating quasi 2D and quasi 1D character. Correlations tune an inter-layer self-doping leading to an almost half-filled, strongly nested quasi 1D $d_{b^2-c^2}$ band, which is prone to strong antiferromagnetic fluctuations, possibly at the origin of superconductivity in Ba$_2$CuO$_{3+y}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا