ﻻ يوجد ملخص باللغة العربية
Noisy labels are commonly found in real-world data, which cause performance degradation of deep neural networks. Cleaning data manually is labour-intensive and time-consuming. Previous research mostly focuses on enhancing classification models against noisy labels, while the robustness of deep metric learning (DML) against noisy labels remains less well-explored. In this paper, we bridge this important gap by proposing Probabilistic Ranking-based Instance Selection with Memory (PRISM) approach for DML. PRISM calculates the probability of a label being clean, and filters out potentially noisy samples. Specifically, we propose three methods to calculate this probability: 1) Average Similarity Method (AvgSim), which calculates the average similarity between potentially noisy data and clean data; 2) Proxy Similarity Method (ProxySim), which replaces the centers maintained by AvgSim with the proxies trained by proxy-based method; and 3) von Mises-Fisher Distribution Similarity (vMF-Sim), which estimates a von Mises-Fisher distribution for each data class. With such a design, the proposed approach can deal with challenging DML situations in which the majority of the samples are noisy. Extensive experiments on both synthetic and real-world noisy dataset show that the proposed approach achieves up to 8.37% higher Precision@1 compared with the best performing state-of-the-art baseline approaches, within reasonable training time.
The existence of noisy labels in real-world data negatively impacts the performance of deep learning models. Although much research effort has been devoted to improving robustness to noisy labels in classification tasks, the problem of noisy labels i
Distance Metric Learning (DML) seeks to learn a discriminative embedding where similar examples are closer, and dissimilar examples are apart. In this paper, we address the problem of Semi-Supervised DML (SSDML) that tries to learn a metric using a f
We propose a new method for semantic instance segmentation, by first computing how likely two pixels are to belong to the same object, and then by grouping similar pixels together. Our similarity metric is based on a deep, fully convolutional embeddi
Multiple instance data are sets or multi-sets of unordered elements. Using metrics or distances for sets, we propose an approach to several multiple instance learning tasks, such as clustering (unsupervised learning), classification (supervised learn
Metric learning involves learning a discriminative representation such that embeddings of similar classes are encouraged to be close, while embeddings of dissimilar classes are pushed far apart. State-of-the-art methods focus mostly on sophisticated