ﻻ يوجد ملخص باللغة العربية
We analyze the spatial variation in the response of the surface geomagnetic field (or the equivalent ionospheric current) to variations in the solar wind. Specifically, we regress a reanalysis of surface external and induced magnetic field (SEIMF) variations onto measurements of the solar wind. The regression is performed in monthly sets, independently for 559 regularly spaced locations covering the entire northern polar region above 50 magnetic latitude. At each location, we find the lag applied to the solar wind data that maximizes the correlation with the SEIMF. The resulting spatial maps of these independent lags and regression coefficients provide a model of the localized SEIMF response to variations in the solar wind, which we call {guillemotleft}Spatial Information from Distributed Exogenous Regression.{guillemotright} We find that the lag and regression coefficients vary systematically with ionospheric region, season, and solar wind driver. In the polar cap region the SEIMF is best described by the (B$_{y}$) component of the interplanetary magnetic field (50-75% of total variance explained) at a lag the SEIMF is best described by the solar wind that varies with season and magnetic local time (MLT), from $sim$15-20 min for dayside and afternoon MLT (except in Oct-Dec) to typically 30-40 min for nightside and morning MLT and even longer (60-65 min) around midnight MLT.
We investigate the spatial correlation properties of the solar wind using simultaneous observations by the ACE and WIND spacecraft. We use mutual information as a nonlinear measure of correlation and compare this to linear correlation. We find that t
A statistical relationship between magnetic reconnection, current sheets and intermittent turbulence in the solar wind is reported for the first time using in-situ measurements from the Wind spacecraft at 1 AU. We identify intermittency as non-Gaussi
We investigate the scattering of strahl electrons by microinstabilities as a mechanism for creating the electron halo in the solar wind. We develop a mathematical framework for the description of electron-driven microinstabilities and discuss the ass
One of the discoveries made by Parker Solar Probe during first encounters with the Sun is the ubiquitous presence of relatively small-scale structures standing out as sudden deflections of the magnetic field. They were called switchbacks as some of t
The twisted local magnetic field at the front or rear regions of the magnetic clouds (MCs) associated with interplanetary coronal mass ejections (ICMEs) is often nearly opposite to the direction of the ambient interplanetary magnetic field (IMF). The