ترغب بنشر مسار تعليمي؟ اضغط هنا

Localized magnetic field structures and their boundaries in the near-Sun solar wind from Parker Solar Probe measurements

107   0   0.0 ( 0 )
 نشر من قبل Vladimir Krasnoselskikh
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. Krasnoselskikh




اسأل ChatGPT حول البحث

One of the discoveries made by Parker Solar Probe during first encounters with the Sun is the ubiquitous presence of relatively small-scale structures standing out as sudden deflections of the magnetic field. They were called switchbacks as some of them show up the full reversal of the radial component of the magnetic field and then return to regular conditions. Analyzing the magnetic field and plasma perturbations associated with switchbacks we identify three types of structures with slightly different characteristics: 1. Alfvenic structures, where the variations of the magnetic field components take place while the magnitude of the field remains constant; 2. Compressional, the field magnitude varies together with changes of the components; 3. Structures manifesting full reversal of the magnetic field (extremal class of Alfvenic structures). Processing of structures boundaries and plasma bulk velocity perturbations lead to the conclusion that they represent localized magnetic field tubes with enhanced parallel plasma velocity and ion beta moving together with respect to surrounding plasma. The magnetic field deflections before and after the switchbacks reveal the existence of total axial current. The electric currents are concentrated on the relatively narrow boundary layers on the surface of the tubes and determine the magnetic field perturbations inside the tube. These currents are closed on the structure surface, and typically have comparable azimuthal and the axial components. The surface of the structure may also accommodate an electromagnetic wave, that assists to particles in carrying currents. We suggest that the two types of structures we analyzed here may represent the local manifestations of the tube deformations corresponding to a saturated stage of the Firehose instability development.

قيم البحث

اقرأ أيضاً

Direct evidence of an inertial-range turbulent energy cascade has been provided by spacecraft observations in heliospheric plasmas. In the solar wind, the average value of the derived heating rate near 1 au is $sim 10^{3}, mathrm{J,kg^{-1},s^{-1}}$, an amount sufficient to account for observed departures from adiabatic expansion. Parker Solar Probe (PSP), even during its first solar encounter, offers the first opportunity to compute, in a similar fashion, a fluid-scale energy decay rate, much closer to the solar corona than any prior in-situ observations. Using the Politano-Pouquet third-order law and the von Karman decay law, we estimate the fluid-range energy transfer rate in the inner heliosphere, at heliocentric distance $R$ ranging from $54,R_{odot}$ (0.25 au) to $36,R_{odot}$ (0.17 au). The energy transfer rate obtained near the first perihelion is about 100 times higher than the average value at 1 au. This dramatic increase in the heating rate is unprecedented in previous solar wind observations, including those from Helios, and the values are close to those obtained in the shocked plasma inside the terrestrial magnetosheath.
Observations at 1 au have confirmed that enhancements in measured energetic particle fluxes are statistically associated with rough magnetic fields, i.e., fields having atypically large spatial derivatives or increments, as measured by the Partial Va riance of Increments (PVI) method. One way to interpret this observation is as an association of the energetic particles with trapping or channeling within magnetic flux tubes, possibly near their boundaries. However, it remains unclear whether this association is a transport or local effect; i.e., the particles might have been energized at a distant location, perhaps by shocks or reconnection, or they might experience local energization or re-acceleration. The Parker Solar Probe (PSP), even in its first two orbits, offers a unique opportunity to study this statistical correlation closer to the corona. As a first step, we analyze the separate correlation properties of the energetic particles measured by the isois instruments during the first solar encounter. The distribution of time intervals between a specific type of event, i.e., the waiting time, can indicate the nature of the underlying process. We find that the isois observations show a power-law distribution of waiting times, indicating a correlated (non-Poisson) distribution. Analysis of low-energy isois data suggests that the results are consistent with the 1 au studies, although we find hints of some unexpected behavior. A more complete understanding of these statistical distributions will provide valuable insights into the origin and propagation of solar energetic particles, a picture that should become clear with future PSP orbits.
131 - L. Yu , S. Y. Huang , Z. G. Yuan 2020
We present a statistical analysis for the characteristics and radial evolution of linear magnetic holes (LMHs) in the solar wind from 0.166 to 0.82 AU using Parker Solar Probe observations of the first two orbits. It is found that the LMHs mainly hav e a duration less than 25 s and the depth is in the range from 0.25 to 0.7. The durations slightly increase and the depths become slightly deeper with the increasing heliocentric distance. Both the plasma temperature and the density for about 50% of all events inside the holes are higher than the ones surrounding the holes. The average occurrence rate is 8.7 events/day, much higher than that of the previous observations. The occurrence rate of the LMHs has no clear variation with the heliocentric distance (only a slight decreasing trend with the increasing heliocentric distance), and has several enhancements around ~0.525 AU and ~0.775 AU, implying that there may be new locally generated LMHs. All events are segmented into three parts (i.e., 0.27, 0.49 and 0.71 AU) to investigate the geometry evolution of the linear magnetic holes. The results show that the geometry of LMHs are prolonged both across and along the magnetic field direction from the Sun to the Earth, while the scales across the field extend a little faster than along the field. The present study could help us to understand the evolution and formation mechanism of the LMHs in the solar wind.
The Parker Solar Probe (PSP) spacecraft has flown into the most dense and previously unexplored region of our solar systems zodiacal cloud. While PSP does not have a dedicated dust detector, multiple instruments onboard are sensitive to the effects o f meteoroid bombardment. Here, we discuss measurements taken during PSPs first two orbits and compare them to models of the zodiacal clouds dust distribution. Comparing the radial impact rate trends and the timing and location of a dust impact to an energetic particle detector, we find the impactor population to be consistent with dust grains on hyperbolic orbits escaping the solar system. Assuming PSPs impact environment is dominated by hyperbolic impactors, the total quantity of dust ejected from our solar system is estimated to be 1-14 tons/s. We expect PSP will encounter an increasingly more intense impactor environment as its perihelion distance and semi-major axis are decreased.
The slow solar wind is typically characterized as having low Alfvenicity. However, Parker Solar Probe (PSP) observed predominately Alfvenic slow solar wind during several of its initial encounters. From its first encounter observations, about 55.3% o f the slow solar wind inside 0.25 au is highly Alfvenic ($|sigma_C| > 0.7$) at current solar minimum, which is much higher than the fraction of quiet-Sun-associated highly Alfvenic slow wind observed at solar maximum at 1 au. Intervals of slow solar wind with different Alfvenicities seem to show similar plasma characteristics and temperature anisotropy distributions. Some low Alfvenicity slow wind intervals even show high temperature anisotropies, because the slow wind may experience perpendicular heating as fast wind does when close to the Sun. This signature is confirmed by Wind spacecraft measurements as we track PSP observations to 1 au. Further, with nearly 15 years of Wind measurements, we find that the distributions of plasma characteristics, temperature anisotropy and helium abundance ratio ($N_alpha/N_p$) are similar in slow winds with different Alfvenicities, but the distributions are different from those in the fast solar wind. Highly Alfvenic slow solar wind contains both helium-rich ($N_alpha/N_psim0.045$) and helium-poor ($N_alpha/N_psim0.015$) populations, implying it may originate from multiple source regions. These results suggest that highly Alfvenic slow solar wind shares similar temperature anisotropy and helium abundance properties with regular slow solar winds, and they thus should have multiple origins.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا