ﻻ يوجد ملخص باللغة العربية
The twisted local magnetic field at the front or rear regions of the magnetic clouds (MCs) associated with interplanetary coronal mass ejections (ICMEs) is often nearly opposite to the direction of the ambient interplanetary magnetic field (IMF). There is also observational evidence for magnetic reconnection (MR) outflows occurring within the boundary layers of MCs. In this paper a MR event located at the western flank of the MC occurring on 2000-10-03 is studied in detail. Both the large-scale geometry of the helical MC and the MR outflow structure are scrutinized in a detailed multi-point study. The ICME sheath is of hybrid propagation-expansion type. Here the freshly reconnected open field lines are expected to slip slowly over the MC resulting in plasma mixing at the same time. As for MR, the current sheet geometry and the vertical motion of the outflow channel between ACE-Geotail-WIND spacecraft was carefully studied and tested. The main findings on MR include: (1) First-time observation of non-Petschek-type slow-shock-like discontinuities in the inflow regions; (2) Observation of turbulent Hall magnetic field associated with a Lorentz force deflected electron jet; (3) Acceleration of protons by reconnection electric field and their back-scatter from the slow shock-like discontinuity; (4) Observation of relativistic electron near the MC inflow boundary/separatrix; these electron populations can presumably appear as a result of non-adiabatic acceleration, gradient B drift and via acceleration in the electrostatic potential well associated with the Hall current system; (5) Observation of Doppler shifted ion-acoustic and Langmuir waves in the MC inflow region.
A statistical relationship between magnetic reconnection, current sheets and intermittent turbulence in the solar wind is reported for the first time using in-situ measurements from the Wind spacecraft at 1 AU. We identify intermittency as non-Gaussi
The Magnetic cloud boundary layer (BL) is a dynamic region formed by the interaction of the magnetic cloud (MC) and the ambient solar wind. In the present study, we comparatively investigate the proton and electron mean flux variations in the BL, in
Petschek-type time-dependent reconnection (TDR) and quasi-stationary reconnection (QSR) models are considered to understand reconnection outflow structures and the features of the associated locally generated turbulence in the solar wind. We show tha
We present a statistical analysis for the characteristics and radial evolution of linear magnetic holes (LMHs) in the solar wind from 0.166 to 0.82 AU using Parker Solar Probe observations of the first two orbits. It is found that the LMHs mainly hav
Fluctuations of solar wind magnetic field and plasma parameters exhibit a typical turbulence power spectrum with a spectral index ranging between $sim -5/3$ and $sim -3/2$. In particular, at $1$ AU, the magnetic field spectrum, observed within fast c