ﻻ يوجد ملخص باللغة العربية
Ductile fracture of metallic materials typically involves the elastoplastic deformation and associated damaging process. A nonlocal lattice particle method (LPM) is proposed to model this complex behavior. Recently, a distortional energy-based model is formulated into LPM to simulate the mixed linear hardening J2 plasticity. However, this model is based on the incremental updating algorithm which needs very small loading steps to get reasonable results. This is time-consuming and unstable for large systems. Therefore, in this paper, a stress-based return-mapping algorithm for simulating J2 plasticity is proposed to deal with these deficiencies. The material deterioration process is reformulated as a nonlocal damage evolution process. By incorporating the iterative solution procedure with dense-packing lattices, the damage-enhanced LPM framework is able to effectively reduce the lattice-dependency of crack grow analysis. The particle-size dependency of macroscopic mechanical responses is also handled properly by using the proposed nonlocal damage model. Several numerical examples are provided to show the ability of the new LPM framework to predict the elastoplastic behavior of engineering structures with/without damage and fracture.
Size effects have been predicted at the micro- or nano-scale for porous ductile materials from Molecular Dynamics, Discrete Dislocation Dynamics and Continuum Mechanics numerical simulations, as a consequence of Geometrically Necessary Dislocations o
A new gradient-based formulation for predicting fracture in elastic-plastic solids is presented. Damage is captured by means of a phase field model that considers both the elastic and plastic works as driving forces for fracture. Material deformation
Notched components are commonly used in engineering structures, where stress concentration may easily lead to crack initiation and development. The main goal of this work is to develop a simple numerical method to predict the structural strength and
We present a stochastic modeling framework for atomistic propagation of a Mode I surface crack, with atoms interacting according to the Lennard-Jones interatomic potential at zero temperature. Specifically, we invoke the Cauchy-Born rule and the maxi
Ebert et al. [Phys. Rev. Lett. 77, 3827 (1996)] have fractured icosahedral Al-Mn-Pd single crystals in ultrahigh vacuum and have investigated the cleavage planes in-situ by scanning tunneling microscopy (STM). Globular patterns in the STM-images were