ﻻ يوجد ملخص باللغة العربية
Notched components are commonly used in engineering structures, where stress concentration may easily lead to crack initiation and development. The main goal of this work is to develop a simple numerical method to predict the structural strength and crack-growth-path of U-notched specimens made of brittle materials. For this purpose, the Fragile Points Method (FPM), as previously proposed by the authors, has been augmented by an interface damage model at the interfaces of the FPM domains, to simulate crack initiation and development. The formulations of FPM are based on a discontinuous Galerkin weak form where point-based piece-wise-continuous polynomial test and trial functions are used instead of element-based basis functions. In this work, the numerical fluxes introduced across interior interfaces between subdomains are postulated as the tractions acting on the interface derived from an interface damage model. The interface damage is triggered when the numerical flux reaches the interface strength, and the process of crack-surface separation is governed by the fracture energy. In this way, arbitrary crack initiation and propagation can be naturally simulated without the need for knowing the fracture-patch before-hand. Additionally, a small penalty parameter is sufficient to enforce the weak-form continuity condition before damage initiation, without causing problems such as artificial compliance and numerical ill-conditioning. As validations, the proposed FPM method with the interface damage model is used to predict the structural strength and crack-development from U-notched structures made of brittle materials, which is useful but challenging in engineering structural design practices.
Stiffness degradation and progressive failure of composite laminates are complex processes involving evolution and multi-mode interactions among fiber fractures, intra-ply matrix cracks and inter-ply delaminations. This paper presents a novel finite
A new gradient-based formulation for predicting fracture in elastic-plastic solids is presented. Damage is captured by means of a phase field model that considers both the elastic and plastic works as driving forces for fracture. Material deformation
Ductile fracture of metallic materials typically involves the elastoplastic deformation and associated damaging process. A nonlocal lattice particle method (LPM) is proposed to model this complex behavior. Recently, a distortional energy-based model
Several aspects influence corrosive processes in RC structures, such as environmental conditions, structural geometry, and mechanical properties. Since these aspects present large randomnesses, probabilistic models allow a more accurate description o
It is well known that domain-decomposition-based multiscale mixed methods rely on interface spaces, defined on the skeleton of the decomposition, to connect the solution among the non-overlapping subdomains. Usual spaces, such as polynomial-based one