ﻻ يوجد ملخص باللغة العربية
Size effects have been predicted at the micro- or nano-scale for porous ductile materials from Molecular Dynamics, Discrete Dislocation Dynamics and Continuum Mechanics numerical simulations, as a consequence of Geometrically Necessary Dislocations or due to the presence of a void matrix interface. As voids size decreases, higher stresses are needed to deform the material, for a given porosity. However, the majority of the homogenized models for porous materials used in ductile fracture modeling are size-independent, even though micrometric or nanometric voids are commonly observed in structural materials. Based on yield criteria proposed in the literature for nanoporous materials, a size-dependent homogenized model for porous materials is proposed for axisymmetric loading conditions, including void growth and coalescence as well as void shape effects. Numerical implementation of the constitutive equations is detailed. The homogenized model is validated through comparisons to porous unit cells finite element simulations that consider interfacial stresses, consistently with the model used for the derivation of the yield criteria, aiming at modeling an additional hardening at the void matrix interface. Potential improvements of the model are finally discussed with respect to the theoretical derivation of refined yield criteria and evolution laws.
Ductile fracture of metallic materials typically involves the elastoplastic deformation and associated damaging process. A nonlocal lattice particle method (LPM) is proposed to model this complex behavior. Recently, a distortional energy-based model
We extend the model-free data-driven paradigm for rate-independent fracture mechanics proposed in Carrara et al. (2020), Data-driven Fracture Mechanics, Comp. Meth. App. Mech. Eng., 372 to rate-dependent fracture and sub-critical fatigue. The problem
Inspired by the formulation of quantum-electrodynamical time-dependent density functional theory (QED-TDDFT) by Rubio and coworkers, we propose an implementation that uses dimensionless amplitudes for describing the photonic contributions to QED-TDDF
We investigate the fracture of heterogeneous materials occurring under unloading from an initial load. Based on a fiber bundle model of time dependent fracture, we show that depending on the unloading rate the system has two phases: for rapid unloadi
Ebert et al. [Phys. Rev. Lett. 77, 3827 (1996)] have fractured icosahedral Al-Mn-Pd single crystals in ultrahigh vacuum and have investigated the cleavage planes in-situ by scanning tunneling microscopy (STM). Globular patterns in the STM-images were