ترغب بنشر مسار تعليمي؟ اضغط هنا

Retrieval of single photons from solid-state quantum transducers

85   0   0.0 ( 0 )
 نشر من قبل Giovanna Morigi Dr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum networks using photonic channels require control of the interactions between the photons, carrying the information, and the elements comprising the nodes. In this work we theoretically analyse the spectral properties of an optical photon emitted by a solid-state quantum memory, which acts as a converter of a photon absorbed in another frequency range. We determine explicitly the expression connecting the stored and retrieved excitation taking into account possible mode and phase mismatching of the experimental setup. The expression we obtain describes the output field as a function of the input field for a transducer working over a wide range of frequencies, from optical-to-optical to microwave-to-optical. We apply this result to analyse the photon spectrum and the retrieval probability as a function of the optical depth for microwave-to-optical transduction. In the absence of losses, the efficiency of the solid-state quantum transducer is intrinsically determined by the capability of designing the retrieval process as the time-reversal of the storage dynamics.

قيم البحث

اقرأ أيضاً

89 - Hui Wang , Z.-C. Duan , Y.-H. Li 2016
By pulsed s-shell resonant excitation of a single quantum dot-micropillar system, we generate long streams of a thousand of near transform-limited single photons with high mutual indistinguishability. Hong-Ou-Mandel interference of two photons are me asured as a function of their emission time separation varying from 13 ns to 14.7 {mu}s, where the visibility slightly drops from 95.9(2)% to a plateau of 92.1(5)% through a slow dephasing process occurring at time scale of 0.7 {mu}s. Temporal and spectral analysis reveal the pulsed resonance fluorescence single photons are close to transform limit, which are readily useful for multi-photon entanglement and interferometry experiments.
A scheme for active temporal-to-spatial demultiplexing of single-photons generated by a solid-state source is introduced. The scheme scales quasi-polynomially with photon number, providing a viable technological path for routing n photons in the one temporal stream from a single emitter to n different spatial modes. The active demultiplexing is demonstrated using a state-of-the-art photon source---a quantum-dot deterministically coupled to a micropillar cavity---and a custom-built demultiplexer---a network of electro-optically reconfigurable waveguides monolithically integrated in a lithium niobate chip. The measured demultiplexer performance can enable a six-photon rate three orders of magnitude higher than the equivalent heralded SPDC source, providing a platform for intermediate quantum computation protocols.
Resonance fluorescence in the Heitler regime provides access to single photons with coherence well beyond the Fourier transform limit of the transition, and holds the promise to circumvent environment-induced dephasing common to all solid-state syste ms. Here we demonstrate that the coherently generated single photons from a single self-assembled InAs quantum dot display mutual coherence with the excitation laser on a timescale exceeding 3 seconds. Exploiting this degree of mutual coherence we synthesize near-arbitrary coherent photon waveforms by shaping the excitation laser field. In contrast to post-emission filtering, our technique avoids both photon loss and degradation of the single photon nature for all synthesized waveforms. By engineering pulsed waveforms of single photons, we further demonstrate that separate photons generated coherently by the same laser field are fundamentally indistinguishable, lending themselves to creation of distant entanglement through quantum interference.
Highly efficient sources of indistinguishable single photons that can operate at room temperature would be very beneficial for many applications in quantum technology. We show that the implementation of such sources is a realistic goal using solid-st ate emitters and ultrasmall mode volume cavities. We derive and analyze an expression for photon indistinguishability that accounts for relevant detrimental effects, such as plasmon-induced quenching and pure-dephasing. We then provide the general cavity and emitter conditions required to achieve efficient indistinguishable photon emission, and also discuss constraints due to phonon sideband emission. Using these conditions, we propose that a nanodiamond negatively charged silicon-vacancy center combined with a plasmonic-Fabry-Perot hybrid cavity is an excellent candidate system.
Large-scale quantum networks will employ telecommunication-wavelength photons to exchange quantum information between remote measurement, storage, and processing nodes via fibre-optic channels. Quantum memories compatible with telecommunication-wavel ength photons are a key element towards building such a quantum network. Here, we demonstrate the storage and retrieval of heralded 1532 nm-wavelength photons using a solid-state waveguide quantum memory. The heralded photons are derived from a photon-pair source that is based on parametric down-conversion, and our quantum memory is based on a 6 GHz-bandwidth atomic frequency comb prepared using an inhomogeneously broadened absorption line of a cryogenically-cooled erbium-doped lithium niobate waveguide. Using persistent spectral hole burning under varying magnetic fields, we determine that the memory is enabled by population transfer into niobium and lithium nuclear spin levels. Despite limited storage time and efficiency, our demonstration represents an important step towards quantum networks that operate in the telecommunication band and the development of on-chip quantum technology using industry-standard crystals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا