ترغب بنشر مسار تعليمي؟ اضغط هنا

Feasibility of efficient room-temperature solid-state sources of indistinguishable single photons using ultrasmall mode volume cavities

306   0   0.0 ( 0 )
 نشر من قبل Christoph Simon
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Highly efficient sources of indistinguishable single photons that can operate at room temperature would be very beneficial for many applications in quantum technology. We show that the implementation of such sources is a realistic goal using solid-state emitters and ultrasmall mode volume cavities. We derive and analyze an expression for photon indistinguishability that accounts for relevant detrimental effects, such as plasmon-induced quenching and pure-dephasing. We then provide the general cavity and emitter conditions required to achieve efficient indistinguishable photon emission, and also discuss constraints due to phonon sideband emission. Using these conditions, we propose that a nanodiamond negatively charged silicon-vacancy center combined with a plasmonic-Fabry-Perot hybrid cavity is an excellent candidate system.

قيم البحث

اقرأ أيضاً

Resonance fluorescence in the Heitler regime provides access to single photons with coherence well beyond the Fourier transform limit of the transition, and holds the promise to circumvent environment-induced dephasing common to all solid-state syste ms. Here we demonstrate that the coherently generated single photons from a single self-assembled InAs quantum dot display mutual coherence with the excitation laser on a timescale exceeding 3 seconds. Exploiting this degree of mutual coherence we synthesize near-arbitrary coherent photon waveforms by shaping the excitation laser field. In contrast to post-emission filtering, our technique avoids both photon loss and degradation of the single photon nature for all synthesized waveforms. By engineering pulsed waveforms of single photons, we further demonstrate that separate photons generated coherently by the same laser field are fundamentally indistinguishable, lending themselves to creation of distant entanglement through quantum interference.
89 - Hui Wang , Z.-C. Duan , Y.-H. Li 2016
By pulsed s-shell resonant excitation of a single quantum dot-micropillar system, we generate long streams of a thousand of near transform-limited single photons with high mutual indistinguishability. Hong-Ou-Mandel interference of two photons are me asured as a function of their emission time separation varying from 13 ns to 14.7 {mu}s, where the visibility slightly drops from 95.9(2)% to a plateau of 92.1(5)% through a slow dephasing process occurring at time scale of 0.7 {mu}s. Temporal and spectral analysis reveal the pulsed resonance fluorescence single photons are close to transform limit, which are readily useful for multi-photon entanglement and interferometry experiments.
160 - Hyeongrak Choi 2018
Recently, Grange et al. [Phys. Rev. Lett. 114, 193601 (2015)] showed the possibility of single photon generation with high indistinguishability from a quantum emitter, despite strong pure dephasing, by `funneling emission into a photonic cavity. Here , we show that cascaded two-cavity system can further improve the photon characteristics and greatly reduce the Q-factor requirement to levels achievable with present-day technology. Our approach leverages recent advances in nanocavities with ultrasmall mode volume and does not require ultrafast excitation of the emitter. These results were obtained by numerical and closed-form analytical models with strong emitter dephasing, representing room-temperature quantum emitters.
Quantum networks using photonic channels require control of the interactions between the photons, carrying the information, and the elements comprising the nodes. In this work we theoretically analyse the spectral properties of an optical photon emit ted by a solid-state quantum memory, which acts as a converter of a photon absorbed in another frequency range. We determine explicitly the expression connecting the stored and retrieved excitation taking into account possible mode and phase mismatching of the experimental setup. The expression we obtain describes the output field as a function of the input field for a transducer working over a wide range of frequencies, from optical-to-optical to microwave-to-optical. We apply this result to analyse the photon spectrum and the retrieval probability as a function of the optical depth for microwave-to-optical transduction. In the absence of losses, the efficiency of the solid-state quantum transducer is intrinsically determined by the capability of designing the retrieval process as the time-reversal of the storage dynamics.
A key ingredient for quantum photonic technologies is an on-demand source of indistinguishable single photons. State-of-the-art indistinguishable single-photon sources typically employ resonant excitation pulses with fixed repetition rates, creating a string of single photons with predetermined arrival times. However, in future applications, an independent electronic signal from a larger quantum circuit or network will trigger the generation of an indistinguishable photon. Further, operating the photon source up to the limit imposed by its lifetime is desirable. Here, we report on the application of a true on-demand approach in which we can electronically trigger the precise arrival time of a single photon as well as control the excitation pulse duration based on resonance fluorescence from a single InAs/GaAs quantum dot. We investigate in detail the effect of the finite duration of an excitation $pi$ pulse on the degree of photon antibunching. Finally, we demonstrate that highly indistinguishable single photons can be generated using this on-demand approach, enabling maximum flexibility for future applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا