ﻻ يوجد ملخص باللغة العربية
A scheme for active temporal-to-spatial demultiplexing of single-photons generated by a solid-state source is introduced. The scheme scales quasi-polynomially with photon number, providing a viable technological path for routing n photons in the one temporal stream from a single emitter to n different spatial modes. The active demultiplexing is demonstrated using a state-of-the-art photon source---a quantum-dot deterministically coupled to a micropillar cavity---and a custom-built demultiplexer---a network of electro-optically reconfigurable waveguides monolithically integrated in a lithium niobate chip. The measured demultiplexer performance can enable a six-photon rate three orders of magnitude higher than the equivalent heralded SPDC source, providing a platform for intermediate quantum computation protocols.
Quantum networks using photonic channels require control of the interactions between the photons, carrying the information, and the elements comprising the nodes. In this work we theoretically analyse the spectral properties of an optical photon emit
Single quantum dots are solid-state emitters which mimic two-level atoms but with a highly enhanced spontaneous emission rate. A single quantum dot is the basis for a potentially excellent single photon source. One outstanding problem is that there i
Resonance fluorescence in the Heitler regime provides access to single photons with coherence well beyond the Fourier transform limit of the transition, and holds the promise to circumvent environment-induced dephasing common to all solid-state syste
A BosonSampling device is a quantum machine expected to perform tasks intractable for a classical computer, yet requiring minimal non-classical resources as compared to full-scale quantum computers. Photonic implementations to date employed sources b
By pulsed s-shell resonant excitation of a single quantum dot-micropillar system, we generate long streams of a thousand of near transform-limited single photons with high mutual indistinguishability. Hong-Ou-Mandel interference of two photons are me