ترغب بنشر مسار تعليمي؟ اضغط هنا

Multimodal Feature Fusion for Video Advertisements Tagging Via Stacking Ensemble

97   0   0.0 ( 0 )
 نشر من قبل Kele Xu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Automated tagging of video advertisements has been a critical yet challenging problem, and it has drawn increasing interests in last years as its applications seem to be evident in many fields. Despite sustainable efforts have been made, the tagging task is still suffered from several challenges, such as, efficiently feature fusion approach is desirable, but under-explored in previous studies. In this paper, we present our approach for Multimodal Video Ads Tagging in the 2021 Tencent Advertising Algorithm Competition. Specifically, we propose a novel multi-modal feature fusion framework, with the goal to combine complementary information from multiple modalities. This framework introduces stacking-based ensembling approach to reduce the influence of varying levels of noise and conflicts between different modalities. Thus, our framework can boost the performance of the tagging task, compared to previous methods. To empirically investigate the effectiveness and robustness of the proposed framework, we conduct extensive experiments on the challenge datasets. The obtained results suggest that our framework can significantly outperform related approaches and our method ranks as the 1st place on the final leaderboard, with a Global Average Precision (GAP) of 82.63%. To better promote the research in this field, we will release our code in the final version.



قيم البحث

اقرأ أيضاً

The pre-trained neural models have recently achieved impressive performances in understanding multimodal content. However, it is still very challenging to pre-train neural models for video and language understanding, especially for Chinese video-lang uage data, due to the following reasons. Firstly, existing video-language pre-training algorithms mainly focus on the co-occurrence of words and video frames, but ignore other valuable semantic and structure information of video-language content, e.g., sequential order and spatiotemporal relationships. Secondly, there exist conflicts between video sentence alignment and other proxy tasks. Thirdly, there is a lack of large-scale and high-quality Chinese video-language datasets (e.g., including 10 million unique videos), which are the fundamental success conditions for pre-training techniques. In this work, we propose a novel video-language understanding framework named VICTOR, which stands for VIdeo-language understanding via Contrastive mulTimOdal pRe-training. Besides general proxy tasks such as masked language modeling, VICTOR constructs several novel proxy tasks under the contrastive learning paradigm, making the model be more robust and able to capture more complex multimodal semantic and structural relationships from different perspectives. VICTOR is trained on a large-scale Chinese video-language dataset, including over 10 million complete videos with corresponding high-quality textual descriptions. We apply the pre-trained VICTOR model to a series of downstream applications and demonstrate its superior performances, comparing against the state-of-the-art pre-training methods such as VideoBERT and UniVL. The codes and trained checkpoints will be publicly available to nourish further developments of the research community.
True understanding of videos comes from a joint analysis of all its modalities: the video frames, the audio track, and any accompanying text such as closed captions. We present a way to learn a compact multimodal feature representation that encodes a ll these modalities. Our model parameters are learned through a proxy task of inferring the temporal ordering of a set of unordered videos in a timeline. To this end, we create a new multimodal dataset for temporal ordering that consists of approximately 30K scenes (2-6 clips per scene) based on the Large Scale Movie Description Challenge. We analyze and evaluate the individual and joint modalities on three challenging tasks: (i) inferring the temporal ordering of a set of videos; and (ii) action recognition. We demonstrate empirically that multimodal representations are indeed complementary, and can play a key role in improving the performance of many applications.
While significant advancements have been made in the generation of deepfakes using deep learning technologies, its misuse is a well-known issue now. Deepfakes can cause severe security and privacy issues as they can be used to impersonate a persons i dentity in a video by replacing his/her face with another persons face. Recently, a new problem of generating synthesized human voice of a person is emerging, where AI-based deep learning models can synthesize any persons voice requiring just a few seconds of audio. With the emerging threat of impersonation attacks using deepfake audios and videos, a new generation of deepfake detectors is needed to focus on both video and audio collectively. A large amount of good quality datasets is typically required to capture the real-world scenarios to develop a competent deepfake detector. Existing deepfake datasets either contain deepfake videos or audios, which are racially biased as well. Hence, there is a crucial need for creating a good video as well as an audio deepfake dataset, which can be used to detect audio and video deepfake simultaneously. To fill this gap, we propose a novel Audio-Video Deepfake dataset (FakeAVCeleb) that contains not only deepfake videos but also respective synthesized lip-synced fake audios. We generate this dataset using the current most popular deepfake generation methods. We selected real YouTube videos of celebrities with four racial backgrounds (Caucasian, Black, East Asian, and South Asian) to develop a more realistic multimodal dataset that addresses racial bias and further help develop multimodal deepfake detectors. We performed several experiments using state-of-the-art detection methods to evaluate our deepfake dataset and demonstrate the challenges and usefulness of our multimodal Audio-Video deepfake dataset.
A significant amount of redundancy exists between consecutive frames of a video. Object detectors typically produce detections for one image at a time, without any capabilities for taking advantage of this redundancy. Meanwhile, many applications for object detection work with videos, including intelligent transportation systems, advanced driver assistance systems and video surveillance. Our work aims at taking advantage of the similarity between video frames to produce better detections. We propose FFAVOD, standing for feature fusion architecture for video object detection. We first introduce a novel video object detection architecture that allows a network to share feature maps between nearby frames. Second, we propose a feature fusion module that learns to merge feature maps to enhance them. We show that using the proposed architecture and the fusion module can improve the performance of three base object detectors on two object detection benchmarks containing sequences of moving road users. Additionally, to further increase performance, we propose an improvement to the SpotNet attention module. Using our architecture on the improved SpotNet detector, we obtain the state-of-the-art performance on the UA-DETRAC public benchmark as well as on the UAVDT dataset. Code is available at https://github.com/hu64/FFAVOD.
In order to resonate with the viewers, many video advertisements explore creative narrative techniques such as Freytags pyramid where a story begins with exposition, followed by rising action, then climax, concluding with denouement. In the dramatic structure of ads in particular, climax depends on changes in sentiment. We dedicate our study to understand the dynamic structure of video ads automatically. To achieve this, we first crowdsource climax annotations on 1,149 videos from the Video Ads Dataset, which already provides sentiment annotations. We then use both unsupervised and supervised methods to predict the climax. Based on the predicted peak, the low-level visual and audio cues, and semantically meaningful context features, we build a sentiment prediction model that outperforms the current state-of-the-art model of sentiment prediction in video ads by 25%. In our ablation study, we show that using our context features, and modeling dynamics with an LSTM, are both crucial factors for improved performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا