ﻻ يوجد ملخص باللغة العربية
High demands for industrial networks lead to increasingly large sensor networks. However, the complexity of networks and demands for accurate data require better stability and communication quality. Conventional clustering methods for ad-hoc networks are based on topology and connectivity, leading to unstable clustering results and low communication quality. In this paper, we focus on two situations: time-evolving networks, and multi-channel ad-hoc networks. We model ad-hoc networks as graphs and introduce community detection methods to both situations. Particularly, in time-evolving networks, our method utilizes the results of community detection to ensure stability. By using similarity or human-in-the-loop measures, we construct a new weighted graph for final clustering. In multi-channel networks, we perform allocations from the results of multiplex community detection. Experiments on real-world datasets show that our method outperforms baselines in both stability and quality.
The design of symbol detectors in digital communication systems has traditionally relied on statistical channel models that describe the relation between the transmitted symbols and the observed signal at the receiver. Here we review a data-driven fr
In this paper, we investigate the sequence estimation problem of faster-than-Nyquist (FTN) signaling as a promising approach for increasing spectral efficiency (SE) in future communication systems. In doing so, we exploit the concept of Gaussian sepa
Cognitive ad-hoc networks allow users to access an unlicensed/shared spectrum without the need for any coordination via a central controller and are being envisioned for futuristic ultra-dense wireless networks. The ad-hoc nature of networks require
Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years because of the rapid proliferation of wireless devices. MANETs are highly vulnerable to attacks due to the open medium, dynamically changing network topo
Algorithms for Massive MIMO uplink detection typically rely on a centralized approach, by which baseband data from all antennas modules are routed to a central node in order to be processed. In case of Massive MIMO, where hundreds or thousands of ant