ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the sequence estimation problem of faster-than-Nyquist (FTN) signaling as a promising approach for increasing spectral efficiency (SE) in future communication systems. In doing so, we exploit the concept of Gaussian separability and propose two probabilistic data association (PDA) algorithms with polynomial time complexity to detect binary phase-shift keying (BPSK) FTN signaling. Simulation results show that the proposed PDA algorithm outperforms the recently proposed SSSSE and SSSgb$K$SE algorithms for all SE values with a modest increase in complexity. The PDA algorithm approaches the performance of the semidefinite relaxation (SDRSE) algorithm for SE values of $0.96$ bits/sec/Hz, and it is within the $0.5$ dB signal-to-noise ratio (SNR) penalty at SE values of $1.10$ bits/sec/Hz for the fixed values of $beta = 0.3$.
Faster-than-Nyquist (FTN) signaling is a promising non-orthogonal physical layer transmission technique to improve the spectral efficiency of future communication systems but at the expense of intersymbol-interference (ISI). In this paper, we investi
Faster than Nyquist (FTN) signaling is an attractive transmission technique that is capable of improving the spectral efficiency with additional detection complexity at the receiver. Semidefinite relaxation (SDR) based FTN detectors are appealing as
Faster-than-Nyquist (FTN) is a promising paradigm to improve bandwidth utilization at the expense of additional intersymbol interference (ISI). In this paper, we apply state-of-the-art deep learning (DL) technology into receiver design for FTN signal
Faster-than-Nyquist (FTN) signaling is a promising non-orthogonal pulse modulation technique that can improve the spectral efficiency (SE) of next generation communication systems at the expense of higher detection complexity to remove the introduced
Reduced complexity faster-than-Nyquist (FTN) signaling systems are gaining increased attention as they provide improved bandwidth utilization for an acceptable level of detection complexity. In order to have a better understanding of the tradeoff bet