ﻻ يوجد ملخص باللغة العربية
Cognitive ad-hoc networks allow users to access an unlicensed/shared spectrum without the need for any coordination via a central controller and are being envisioned for futuristic ultra-dense wireless networks. The ad-hoc nature of networks require each user to learn and regularly update various network parameters such as channel quality and the number of users, and use learned information to improve the spectrum utilization and minimize collisions. For such a learning and coordination task, we propose a distributed algorithm based on a multi-player multi-armed bandit approach and novel signaling scheme. The proposed algorithm does not need prior knowledge of network parameters (users, channels) and its ability to detect as well as adapt to the changes in the network parameters thereby making it suitable for static as well as dynamic networks. The theoretical analysis and extensive simulation results validate the superiority of the proposed algorithm over existing state-of-the-art algorithms.
This paper reports experimental results on self-organizing wireless networks carried by small flying robots. Flying ad hoc networks (FANETs) composed of small unmanned aerial vehicles (UAVs) are flexible, inexpensive and fast to deploy. This makes th
In this paper, we propose and evaluate a distributed protocol to manage trust diffusion in ad hoc networks. In this protocol, each node i maintains a trust value about an other node j which is computed both as a result of the exchanges with node j it
In dynamic wireless ad-hoc networks (DynWANs), autonomous computing devices set up a network for the communication needs of the moment. These networks require the implementation of a medium access control (MAC) layer. We consider MAC protocols for Dy
Broadcast routing has become an important research field for vehicular ad-hoc networks (VANETs) recently. However, the packet delivery rate is generally low in existing VANET broadcast routing protocols. Therefore, the design of an appropriate broadc
Cognitive radio (CR) technology will have significant impacts on upper layer performance in mobile ad hoc networks (MANETs). In this paper, we study topology control and routing in CR-MANETs. We propose a distributed Prediction-based Cognitive Topolo