ترغب بنشر مسار تعليمي؟ اضغط هنا

Agent-aware State Estimation in Autonomous Vehicles

258   0   0.0 ( 0 )
 نشر من قبل Shane Parr
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Autonomous systems often operate in environments where the behavior of multiple agents is coordinated by a shared global state. Reliable estimation of the global state is thus critical for successfully operating in a multi-agent setting. We introduce agent-aware state estimation -- a framework for calculating indirect estimations of state given observations of the behavior of other agents in the environment. We also introduce transition-independent agent-aware state estimation -- a tractable class of agent-aware state estimation -- and show that it allows the speed of inference to scale linearly with the number of agents in the environment. As an example, we model traffic light classification in instances of complete loss of direct observation. By taking into account observations of vehicular behavior from multiple directions of traffic, our approach exhibits accuracy higher than that of existing traffic light-only HMM methods on a real-world autonomous vehicle data set under a variety of simulated occlusion scenarios.

قيم البحث

اقرأ أيضاً

For autonomous vehicles integrating onto roadways with human traffic participants, it requires understanding and adapting to the participants intention and driving styles by responding in predictable ways without explicit communication. This paper pr oposes a reinforcement learning based negotiation-aware motion planning framework, which adopts RL to adjust the driving style of the planner by dynamically modifying the prediction horizon length of the motion planner in real time adaptively w.r.t the event of a change in environment, typically triggered by traffic participants switch of intents with different driving styles. The framework models the interaction between the autonomous vehicle and other traffic participants as a Markov Decision Process. A temporal sequence of occupancy grid maps are taken as inputs for RL module to embed an implicit intention reasoning. Curriculum learning is employed to enhance the training efficiency and the robustness of the algorithm. We applied our method to narrow lane navigation in both simulation and real world to demonstrate that the proposed method outperforms the common alternative due to its advantage in alleviating the social dilemma problem with proper negotiation skills.
We study the ability of autonomous vehicles to improve the throughput of a bottleneck using a fully decentralized control scheme in a mixed autonomy setting. We consider the problem of improving the throughput of a scaled model of the San Francisco-O akland Bay Bridge: a two-stage bottleneck where four lanes reduce to two and then reduce to one. Although there is extensive work examining variants of bottleneck control in a centralized setting, there is less study of the challenging multi-agent setting where the large number of interacting AVs leads to significant optimization difficulties for reinforcement learning methods. We apply multi-agent reinforcement algorithms to this problem and demonstrate that significant improvements in bottleneck throughput, from 20% at a 5% penetration rate to 33% at a 40% penetration rate, can be achieved. We compare our results to a hand-designed feedback controller and demonstrate that our results sharply outperform the feedback controller despite extensive tuning. Additionally, we demonstrate that the RL-based controllers adopt a robust strategy that works across penetration rates whereas the feedback controllers degrade immediately upon penetration rate variation. We investigate the feasibility of both action and observation decentralization and demonstrate that effective strategies are possible using purely local sensing. Finally, we open-source our code at https://github.com/eugenevinitsky/decentralized_bottlenecks.
With the adoption of autonomous vehicles on our roads, we will witness a mixed-autonomy environment where autonomous and human-driven vehicles must learn to co-exist by sharing the same road infrastructure. To attain socially-desirable behaviors, aut onomous vehicles must be instructed to consider the utility of other vehicles around them in their decision-making process. Particularly, we study the maneuver planning problem for autonomous vehicles and investigate how a decentralized reward structure can induce altruism in their behavior and incentivize them to account for the interest of other autonomous and human-driven vehicles. This is a challenging problem due to the ambiguity of a human drivers willingness to cooperate with an autonomous vehicle. Thus, in contrast with the existing works which rely on behavior models of human drivers, we take an end-to-end approach and let the autonomous agents to implicitly learn the decision-making process of human drivers only from experience. We introduce a multi-agent variant of the synchronous Advantage Actor-Critic (A2C) algorithm and train agents that coordinate with each other and can affect the behavior of human drivers to improve traffic flow and safety.
We propose a safe DRL approach for autonomous vehicle (AV) navigation through crowds of pedestrians while making a left turn at an unsignalized intersection. Our method uses two long-short term memory (LSTM) models that are trained to generate the pe rceived state of the environment and the future trajectories of pedestrians given noisy observations of their movement. A future collision prediction algorithm based on the future trajectories of the ego vehicle and pedestrians is used to mask unsafe actions if the system predicts a collision. The performance of our approach is evaluated in two experiments using the high-fidelity CARLA simulation environment. The first experiment tests the performance of our method at intersections that are similar to the training intersection and the second experiment tests our method at intersections with a different topology. For both experiments, our methods do not result in a collision with a pedestrian while still navigating the intersection at a reasonable speed.
Uncertainties in Deep Neural Network (DNN)-based perception and vehicles motion pose challenges to the development of safe autonomous driving vehicles. In this paper, we propose a safe motion planning framework featuring the quantification and propag ation of DNN-based perception uncertainties and motion uncertainties. Contributions of this work are twofold: (1) A Bayesian Deep Neural network model which detects 3D objects and quantitatively captures the associated aleatoric and epistemic uncertainties of DNNs; (2) An uncertainty-aware motion planning algorithm (PU-RRT) that accounts for uncertainties in object detection and ego-vehicles motion. The proposed approaches are validated via simulated complex scenarios built in CARLA. Experimental results show that the proposed motion planning scheme can cope with uncertainties of DNN-based perception and vehicle motion, and improve the operational safety of autonomous vehicles while still achieving desirable efficiency.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا