ترغب بنشر مسار تعليمي؟ اضغط هنا

Capture Uncertainties in Deep Neural Networks for Safe Operation of Autonomous Driving Vehicles

159   0   0.0 ( 0 )
 نشر من قبل Dachuan Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Uncertainties in Deep Neural Network (DNN)-based perception and vehicles motion pose challenges to the development of safe autonomous driving vehicles. In this paper, we propose a safe motion planning framework featuring the quantification and propagation of DNN-based perception uncertainties and motion uncertainties. Contributions of this work are twofold: (1) A Bayesian Deep Neural network model which detects 3D objects and quantitatively captures the associated aleatoric and epistemic uncertainties of DNNs; (2) An uncertainty-aware motion planning algorithm (PU-RRT) that accounts for uncertainties in object detection and ego-vehicles motion. The proposed approaches are validated via simulated complex scenarios built in CARLA. Experimental results show that the proposed motion planning scheme can cope with uncertainties of DNN-based perception and vehicle motion, and improve the operational safety of autonomous vehicles while still achieving desirable efficiency.


قيم البحث

اقرأ أيضاً

An excellent self-driving car is expected to take its passengers safely and efficiently from one place to another. However, different ways of defining safety and efficiency may significantly affect the conclusion we make. In this paper, we give forma l definitions to the safe state of a road and safe state of a vehicle using the syntax of linear temporal logic (LTL). We then propose the concept of safe driving throughput (SDT) and safe driving capacity (SDC) which measure the amount of vehicles in the safe state on a road. We analyze how SDT is affected by different factors. We show the analytic difference of SDC between the road with perception-based vehicles (PBV) and the road with cooperative-based vehicles (CBV). We claim that through proper design, the SDC of the road filled with PBVs will be upper-bounded by the SDC of the road filled with CBVs.
We propose a safe DRL approach for autonomous vehicle (AV) navigation through crowds of pedestrians while making a left turn at an unsignalized intersection. Our method uses two long-short term memory (LSTM) models that are trained to generate the pe rceived state of the environment and the future trajectories of pedestrians given noisy observations of their movement. A future collision prediction algorithm based on the future trajectories of the ego vehicle and pedestrians is used to mask unsafe actions if the system predicts a collision. The performance of our approach is evaluated in two experiments using the high-fidelity CARLA simulation environment. The first experiment tests the performance of our method at intersections that are similar to the training intersection and the second experiment tests our method at intersections with a different topology. For both experiments, our methods do not result in a collision with a pedestrian while still navigating the intersection at a reasonable speed.
Autonomous driving in multi-agent and dynamic traffic scenarios is challenging, where the behaviors of other road agents are uncertain and hard to model explicitly, and the ego-vehicle should apply complicated negotiation skills with them to achieve both safe and efficient driving in various settings, such as giving way, merging and taking turns. Traditional planning methods are largely rule-based and scale poorly in these complex dynamic scenarios, often leading to reactive or even overly conservative behaviors. Therefore, they require tedious human efforts to maintain workability. Recently, deep learning-based methods have shown promising results with better generalization capability but less hand engineering effort. However, they are either implemented with supervised imitation learning (IL) that suffers from the dataset bias and distribution mismatch problems, or trained with deep reinforcement learning (DRL) but focus on one specific traffic scenario. In this work, we propose DQ-GAT to achieve scalable and proactive autonomous driving, where graph attention-based networks are used to implicitly model interactions, and asynchronous deep Q-learning is employed to train the network end-to-end in an unsupervised manner. Extensive experiments through a high-fidelity driving simulation show that our method can better trade-off safety and efficiency in both seen and unseen scenarios, achieving higher goal success rates than the baselines (at most 4.7$times$) with comparable task completion time. Demonstration videos are available at https://caipeide.github.io/dq-gat/.
With the advancement of affordable self-driving vehicles using complicated nonlinear optimization but limited computation resources, computation time becomes a matter of concern. Other factors such as actuator dynamics and actuator command processing cost also unavoidably cause delays. In high-speed scenarios, these delays are critical to the safety of a vehicle. Recent works consider these delays individually, but none unifies them all in the context of autonomous driving. Moreover, recent works inappropriately consider computation time as a constant or a large upper bound, which makes the control either less responsive or over-conservative. To deal with all these delays, we present a unified framework by 1) modeling actuation dynamics, 2) using robust tube model predictive control, 3) using a novel adaptive Kalman filter without assuminga known process model and noise covariance, which makes the controller safe while minimizing conservativeness. On onehand, our approach can serve as a standalone controller; on theother hand, our approach provides a safety guard for a high-level controller, which assumes no delay. This can be used for compensating the sim-to-real gap when deploying a black-box learning-enabled controller trained in a simplistic environment without considering delays for practical vehicle systems.
This paper presents a novel algorithm, called $epsilon^*$+, for online coverage path planning of unknown environments using energy-constrained autonomous vehicles. Due to limited battery size, the energy-constrained vehicles have limited duration of operation time. Therefore, while executing a coverage trajectory, the vehicle has to return to the charging station for a recharge before the battery runs out. In this regard, the $epsilon^*$+ algorithm enables the vehicle to retreat back to the charging station based on the remaining energy which is monitored throughout the coverage process. This is followed by an advance trajectory that takes the vehicle to a near by unexplored waypoint to restart the coverage process, instead of taking it back to the previous left over point of the retreat trajectory; thus reducing the overall coverage time. The proposed $epsilon^*$+ algorithm is an extension of the $epsilon^*$ algorithm, which utilizes an Exploratory Turing Machine (ETM) as a supervisor to navigate the vehicle with back and forth trajectory for complete coverage. The performance of the $epsilon^*$+ algorithm is validated on complex scenarios using Player/Stage which is a high-fidelity robotic simulator.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا