ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Learning for Time-varying Networks: A Scalable Design

103   0   0.0 ( 0 )
 نشر من قبل Jian Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The wireless network is undergoing a trend from onnection of things to connection of intelligence. With data spread over the communication networks and computing capability enhanced on the devices, distributed learning becomes a hot topic in both industrial and academic communities. Many frameworks, such as federated learning and federated distillation, have been proposed. However, few of them takes good care of obstacles such as the time-varying topology resulted by the characteristics of wireless networks. In this paper, we propose a distributed learning framework based on a scalable deep neural network (DNN) design. By exploiting the permutation equivalence and invariance properties of the learning tasks, the DNNs with different scales for different clients can be built up based on two basic parameter sub-matrices. Further, model aggregation can also be conducted based on these two sub-matrices to improve the learning convergence and performance. Finally, simulation results verify the benefits of the proposed framework by compared with some baselines.



قيم البحث

اقرأ أيضاً

Information theory has been very successful in obtaining performance limits for various problems such as communication, compression and hypothesis testing. Likewise, stochastic control theory provides a characterization of optimal policies for Partia lly Observable Markov Decision Processes (POMDPs) using dynamic programming. However, finding optimal policies for these problems is computationally hard in general and thus, heuristic solutions are employed in practice. Deep learning can be used as a tool for designing better heuristics in such problems. In this paper, the problem of active sequential hypothesis testing is considered. The goal is to design a policy that can reliably infer the true hypothesis using as few samples as possible by adaptively selecting appropriate queries. This problem can be modeled as a POMDP and bounds on its value function exist in literature. However, optimal policies have not been identified and various heuristics are used. In this paper, two new heuristics are proposed: one based on deep reinforcement learning and another based on a KL-divergence zero-sum game. These heuristics are compared with state-of-the-art solutions and it is demonstrated using numerical experiments that the proposed heuristics can achieve significantly better performance than existing methods in some scenarios.
148 - Mengfan Liu , Rui Wang 2020
With the high development of wireless communication techniques, it is widely used in various fields for convenient and efficient data transmission. Different from commonly used assumption of the time-invariant wireless channel, we focus on the resear ch on the time-varying wireless downlink channel to get close to the practical situation. Our objective is to gain the maximum value of sum rate in the time-varying channel under the some constraints about cut-off signal-to-interference and noise ratio (SINR), transmitted power and beamforming. In order to adapt the rapid changing channel, we abandon the frequently used algorithm convex optimization and deep reinforcement learning algorithms are used in this paper. From the view of the ordinary measures such as power control, interference incoordination and beamforming, continuous changes of measures should be put into consideration while sparse reward problem due to the abortion of episodes as an important bottleneck should not be ignored. Therefore, with the analysis of relevant algorithms, we proposed two algorithms, Deep Deterministic Policy Gradient algorithm (DDPG) and hierarchical DDPG, in our work. As for these two algorithms, in order to solve the discrete output, DDPG is established by combining the Actor-Critic algorithm with Deep Q-learning (DQN), so that it can output the continuous actions without sacrificing the existed advantages brought by DQN and also can improve the performance. Also, to address the challenge of sparse reward, we take advantage of meta policy from the idea of hierarchical theory to divide one agent in DDPG into one meta-controller and one controller as hierarchical DDPG. Our simulation results demonstrate that the proposed DDPG and hierarchical DDPG performs well from the views of coverage, convergence and sum rate performance.
In a sensor network, in practice, the communication among sensors is subject to:(1) errors or failures at random times; (3) costs; and(2) constraints since sensors and networks operate under scarce resources, such as power, data rate, or communicatio n. The signal-to-noise ratio (SNR) is usually a main factor in determining the probability of error (or of communication failure) in a link. These probabilities are then a proxy for the SNR under which the links operate. The paper studies the problem of designing the topology, i.e., assigning the probabilities of reliable communication among sensors (or of link failures) to maximize the rate of convergence of average consensus, when the link communication costs are taken into account, and there is an overall communication budget constraint. To consider this problem, we address a number of preliminary issues: (1) model the network as a random topology; (2) establish necessary and sufficient conditions for mean square sense (mss) and almost sure (a.s.) convergence of average consensus when network links fail; and, in particular, (3) show that a necessary and sufficient condition for both mss and a.s. convergence is for the algebraic connectivity of the mean graph describing the network topology to be strictly positive. With these results, we formulate topology design, subject to random link failures and to a communication cost constraint, as a constrained convex optimization problem to which we apply semidefinite programming techniques. We show by an extensive numerical study that the optimal design improves significantly the convergence speed of the consensus algorithm and can achieve the asymptotic performance of a non-random network at a fraction of the communication cost.
In this paper, a cooperative Linear Quadratic Regulator (LQR) problem is investigated for multi-input systems, where each input is generated by an agent in a network. The input matrices are different and locally possessed by the corresponding agents respectively, which can be regarded as different ways for agents to control the multi-input system. By embedding a fully distributed information fusion strategy, a novel cooperative LQR-based controller is proposed. Each agent only needs to communicate with its neighbors, rather than sharing information globally in a network. Moreover, only the joint controllability is required, which allows the multi-input system to be uncontrollable for every single agent or even all its neighbors. In particular, only one-time information exchange is necessary at every control step, which significantly reduces the communication consumption. It is proved that the boundedness (convergence) of the controller gains is guaranteed for time-varying (time-invariant) systems. Furthermore, the control performance of the entire system is ensured. Generally, the proposed controller achieves a better trade-off between the control performance and the communication overhead, compared with the existing centralized/decentralized/consensus-based LQR controllers. Finally, the effectiveness of the theoretical results is illustrated by several comparative numerical examples.
Deep learning recommendation models (DLRMs) are used across many business-critical services at Facebook and are the single largest AI application in terms of infrastructure demand in its data-centers. In this paper we discuss the SW/HW co-designed so lution for high-performance distributed training of large-scale DLRMs. We introduce a high-performance scalable software stack based on PyTorch and pair it with the new evolution of Zion platform, namely ZionEX. We demonstrate the capability to train very large DLRMs with up to 12 Trillion parameters and show that we can attain 40X speedup in terms of time to solution over previous systems. We achieve this by (i) designing the ZionEX platform with dedicated scale-out network, provisioned with high bandwidth, optimal topology and efficient transport (ii) implementing an optimized PyTorch-based training stack supporting both model and data parallelism (iii) developing sharding algorithms capable of hierarchical partitioning of the embedding tables along row, column dimensions and load balancing them across multiple workers; (iv) adding high-performance core operators while retaining flexibility to support optimizers with fully deterministic updates (v) leveraging reduced precision communications, multi-level memory hierarchy (HBM+DDR+SSD) and pipelining. Furthermore, we develop and briefly comment on distributed data ingestion and other supporting services that are required for the robust and efficient end-to-end training in production environments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا