ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Reinforcement Learning Based Dynamic Power and Beamforming Design for Time-Varying Wireless Downlink Interference Channel

149   0   0.0 ( 0 )
 نشر من قبل Rui Wang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the high development of wireless communication techniques, it is widely used in various fields for convenient and efficient data transmission. Different from commonly used assumption of the time-invariant wireless channel, we focus on the research on the time-varying wireless downlink channel to get close to the practical situation. Our objective is to gain the maximum value of sum rate in the time-varying channel under the some constraints about cut-off signal-to-interference and noise ratio (SINR), transmitted power and beamforming. In order to adapt the rapid changing channel, we abandon the frequently used algorithm convex optimization and deep reinforcement learning algorithms are used in this paper. From the view of the ordinary measures such as power control, interference incoordination and beamforming, continuous changes of measures should be put into consideration while sparse reward problem due to the abortion of episodes as an important bottleneck should not be ignored. Therefore, with the analysis of relevant algorithms, we proposed two algorithms, Deep Deterministic Policy Gradient algorithm (DDPG) and hierarchical DDPG, in our work. As for these two algorithms, in order to solve the discrete output, DDPG is established by combining the Actor-Critic algorithm with Deep Q-learning (DQN), so that it can output the continuous actions without sacrificing the existed advantages brought by DQN and also can improve the performance. Also, to address the challenge of sparse reward, we take advantage of meta policy from the idea of hierarchical theory to divide one agent in DDPG into one meta-controller and one controller as hierarchical DDPG. Our simulation results demonstrate that the proposed DDPG and hierarchical DDPG performs well from the views of coverage, convergence and sum rate performance.

قيم البحث

اقرأ أيضاً

This paper studies fast adaptive beamforming optimization for the signal-to-interference-plus-noise ratio balancing problem in a multiuser multiple-input single-output downlink system. Existing deep learning based approaches to predict beamforming re ly on the assumption that the training and testing channels follow the same distribution which may not hold in practice. As a result, a trained model may lead to performance deterioration when the testing network environment changes. To deal with this task mismatch issue, we propose two offline adaptive algorithms based on deep transfer learning and meta-learning, which are able to achieve fast adaptation with the limited new labelled data when the testing wireless environment changes. Furthermore, we propose an online algorithm to enhance the adaptation capability of the offline meta algorithm in realistic non-stationary environments. Simulation results demonstrate that the proposed adaptive algorithms achieve much better performance than the direct deep learning algorithm without adaptation in new environments. The meta-learning algorithm outperforms the deep transfer learning algorithm and achieves near optimal performance. In addition, compared to the offline meta-learning algorithm, the proposed online meta-learning algorithm shows superior adaption performance in changing environments.
Beamforming is an effective means to improve the quality of the received signals in multiuser multiple-input-single-output (MISO) systems. Traditionally, finding the optimal beamforming solution relies on iterative algorithms, which introduces high c omputational delay and is thus not suitable for real-time implementation. In this paper, we propose a deep learning framework for the optimization of downlink beamforming. In particular, the solution is obtained based on convolutional neural networks and exploitation of expert knowledge, such as the uplink-downlink duality and the known structure of optimal solutions. Using this framework, we construct three beamforming neural networks (BNNs) for three typical optimization problems, i.e., the signal-to-interference-plus-noise ratio (SINR) balancing problem, the power minimization problem, and the sum rate maximization problem. For the former two problems the BNNs adopt the supervised learning approach, while for the sum rate maximization problem a hybrid method of supervised and unsupervised learning is employed. Simulation results show that the BNNs can achieve near-optimal solutions to the SINR balancing and power minimization problems, and a performance close to that of the weighted minimum mean squared error algorithm for the sum rate maximization problem, while in all cases enjoy significantly reduced computational complexity. In summary, this work paves the way for fast realization of optimal beamforming in multiuser MISO systems.
143 - Pingyang Wu , Jun Li , Long Shi 2019
This letter studies a basic wireless caching network where a source server is connected to a cache-enabled base station (BS) that serves multiple requesting users. A critical problem is how to improve cache hit rate under dynamic content popularity. To solve this problem, the primary contribution of this work is to develop a novel dynamic content update strategy with the aid of deep reinforcement learning. Considering that the BS is unaware of content popularities, the proposed strategy dynamically updates the BS cache according to the time-varying requests and the BS cached contents. Towards this end, we model the problem of cache update as a Markov decision process and put forth an efficient algorithm that builds upon the long short-term memory network and external memory to enhance the decision making ability of the BS. Simulation results show that the proposed algorithm can achieve not only a higher average reward than deep Q-network, but also a higher cache hit rate than the existing replacement policies such as the least recently used, first-in first-out, and deep Q-network based algorithms.
136 - S. Kisseleff , I.F. Akyildiz , 2015
Magnetic induction (MI) based communication and power transfer systems have gained an increased attention in the recent years. Typical applications for these systems lie in the area of wireless charging, near-field communication, and wireless sensor networks. For an optimal system performance, the power efficiency needs to be maximized. Typically, this optimization refers to the impedance matching and tracking of the split-frequencies. However, an important role of magnitude and phase of the input signal has been mostly overlooked. Especially for the wireless power transfer systems with multiple transmitter coils, the optimization of the transmit signals can dramatically improve the power efficiency. In this work, we propose an iterative algorithm for the optimization of the transmit signals for a transmitter with three orthogonal coils and multiple single coil receivers. The proposed scheme significantly outperforms the traditional baseline algorithms in terms of power efficiency.
237 - Yong Zeng , Bruno Clerckx , 2016
Radiative wireless power transfer (WPT) is a promising technology to provide cost-effective and real-time power supplies to wireless devices. Although radiative WPT shares many similar characteristics with the extensively studied wireless information transfer or communication, they also differ significantly in terms of design objectives, transmitter/receiver architectures and hardware constraints, etc. In this article, we first give an overview on the various WPT technologies, the historical development of the radiative WPT technology and the main challenges in designing contemporary radiative WPT systems. Then, we focus on discussing the new communication and signal processing techniques that can be applied to tackle these challenges. Topics discussed include energy harvester modeling, energy beamforming for WPT, channel acquisition, power region characterization in multi-user WPT, waveform design with linear and non-linear energy receiver model, safety and health issues of WPT, massive MIMO (multiple-input multiple-output) and millimeter wave (mmWave) enabled WPT, wireless charging control, and wireless power and communication systems co-design. We also point out directions that are promising for future research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا