ﻻ يوجد ملخص باللغة العربية
All learning algorithms for recommendations face inevitable and critical trade-off between exploiting partial knowledge of a users preferences for short-term satisfaction and exploring additional user preferences for long-term coverage. Although exploration is indispensable for long success of a recommender system, the exploration has been considered as the risk to decrease user satisfaction. The reason for the risk is that items chosen for exploration frequently mismatch with the users interests. To mitigate this risk, recommender systems have mixed items chosen for exploration into a recommendation list, disguising the items as recommendations to elicit feedback on the items to discover the users additional tastes. This mix-in approach has been widely used in many recommenders, but there is rare research, evaluating the effectiveness of the mix-in approach or proposing a new approach for eliciting user feedback without deceiving users. In this work, we aim to propose a new approach for feedback elicitation without any deception and compare our approach to the conventional mix-in approach for evaluation. To this end, we designed a recommender interface that reveals which items are for exploration and conducted a within-subject study with 94 MTurk workers. Our results indicated that users left significantly more feedback on items chosen for exploration with our interface. Besides, users evaluated that our new interface is better than the conventional mix-in interface in terms of novelty, diversity, transparency, trust, and satisfaction. Finally, path analysis show that, in only our new interface, exploration caused to increase user-centric evaluation metrics. Our work paves the way for how to design an interface, which utilizes learning algorithm based on users feedback signals, giving better user experience and gathering more feedback data.
As the field of recommender systems has developed, authors have used a myriad of notations for describing the mathematical workings of recommendation algorithms. These notations ap-pear in research papers, books, lecture notes, blog posts, and softwa
Recommender Systems are especially challenging for marketplaces since they must maximize user satisfaction while maintaining the healthiness and fairness of such ecosystems. In this context, we observed a lack of resources to design, train, and evalu
Collaborative filtering, a widely-used recommendation technique, predicts a users preference by aggregating the ratings from similar users. As a result, these measures cannot fully utilize the rating information and are not suitable for real world sp
Recommender Systems are nowadays successfully used by all major web sites (from e-commerce to social media) to filter content and make suggestions in a personalized way. Academic research largely focuses on the value of recommenders for consumers, e.
Recent years have witnessed the fast development of the emerging topic of Graph Learning based Recommender Systems (GLRS). GLRS employ advanced graph learning approaches to model users preferences and intentions as well as items characteristics for r