ترغب بنشر مسار تعليمي؟ اضغط هنا

PMD: An Optimal Transportation-based User Distance for Recommender Systems

274   0   0.0 ( 0 )
 نشر من قبل Yitong Meng
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Collaborative filtering, a widely-used recommendation technique, predicts a users preference by aggregating the ratings from similar users. As a result, these measures cannot fully utilize the rating information and are not suitable for real world sparse data. To solve these issues, we propose a novel user distance measure named Preference Movers Distance (PMD) which makes full use of all ratings made by each user. Our proposed PMD can properly measure the distance between a pair of users even if they have no co-rated items. We show that this measure can be cast as an instance of the Earth Movers Distance, a well-studied transportation problem for which several highly efficient solvers have been developed. Experimental results show that PMD can help achieve superior recommendation accuracy than state-of-the-art methods, especially when training data is very sparse.

قيم البحث

اقرأ أيضاً

Recent studies have shown that providing personalized explanations alongside recommendations increases trust and perceived quality. Furthermore, it gives users an opportunity to refine the recommendations by critiquing parts of the explanations. On o ne hand, current recommender systems model the recommendation, explanation, and critiquing objectives jointly, but this creates an inherent trade-off between their respective performance. On the other hand, although recent latent linear critiquing approaches are built upon an existing recommender system, they suffer from computational inefficiency at inference due to the objective optimized at each conversations turn. We address these deficiencies with M&Ms-VAE, a novel variational autoencoder for recommendation and explanation that is based on multimodal modeling assumptions. We train the model under a weak supervision scheme to simulate both fully and partially observed variables. Then, we leverage the generalization ability of a trained M&Ms-VAE model to embed the user preference and the critique separately. Our works most important innovation is our critiquing module, which is built upon and trained in a self-supervised manner with a simple ranking objective. Experiments on four real-world datasets demonstrate that among state-of-the-art models, our system is the first to dominate or match the performance in terms of recommendation, explanation, and multi-step critiquing. Moreover, M&Ms-VAE processes the critiques up to 25.6x faster than the best baselines. Finally, we show that our model infers coherent joint and cross generation, even under weak supervision, thanks to our multimodal-based modeling and training scheme.
373 - Shoujin Wang , Liang Hu , Yan Wang 2021
Recent years have witnessed the fast development of the emerging topic of Graph Learning based Recommender Systems (GLRS). GLRS employ advanced graph learning approaches to model users preferences and intentions as well as items characteristics for r ecommendations. Differently from other RS approaches, including content-based filtering and collaborative filtering, GLRS are built on graphs where the important objects, e.g., users, items, and attributes, are either explicitly or implicitly connected. With the rapid development of graph learning techniques, exploring and exploiting homogeneous or heterogeneous relations in graphs are a promising direction for building more effective RS. In this paper, we provide a systematic review of GLRS, by discussing how they extract important knowledge from graph-based representations to improve the accuracy, reliability and explainability of the recommendations. First, we characterize and formalize GLRS, and then summarize and categorize the key challenges and main progress in this novel research area. Finally, we share some new research directions in this vibrant area.
Modeling user interests is crucial in real-world recommender systems. In this paper, we present a new user interest representation model for personalized recommendation. Specifically, the key novelty behind our model is that it explicitly models user interests as a hypercuboid instead of a point in the space. In our approach, the recommendation score is learned by calculating a compositional distance between the user hypercuboid and the item. This helps to alleviate the potential geometric inflexibility of existing collaborative filtering approaches, enabling a greater extent of modeling capability. Furthermore, we present two variants of hypercuboids to enhance the capability in capturing the diversities of user interests. A neural architecture is also proposed to facilitate user hypercuboid learning by capturing the activity sequences (e.g., buy and rate) of users. We demonstrate the effectiveness of our proposed model via extensive experiments on both public and commercial datasets. Empirical results show that our approach achieves very promising results, outperforming existing state-of-the-art.
Recommendations with personalized explanations have been shown to increase user trust and perceived quality and help users make better decisions. Moreover, such explanations allow users to provide feedback by critiquing them. Several algorithms for r ecommender systems with multi-step critiquing have therefore been developed. However, providing a user-friendly interface based on personalized explanations and critiquing has not been addressed in the last decade. In this paper, we introduce four different web interfaces (available under https://lia.epfl.ch/critiquing/) helping users making decisions and finding their ideal item. We have chosen the hotel recommendation domain as a use case even though our approach is trivially adaptable for other domains. Moreover, our system is model-agnostic (for both recommender systems and critiquing models) allowing a great flexibility and further extensions. Our interfaces are above all a useful tool to help research in recommendation with critiquing. They allow to test such systems on a real use case and also to highlight some limitations of these approaches to find solutions to overcome them.
System-provided explanations for recommendations are an important component towards transparent and trustworthy AI. In state-of-the-art research, this is a one-way signal, though, to improve user acceptance. In this paper, we turn the role of explana tions around and investigate how they can contribute to enhancing the quality of the generated recommendations themselves. We devise a human-in-the-loop framework, called ELIXIR, where user feedback on explanations is leveraged for pairwise learning of user preferences. ELIXIR leverages feedback on pairs of recommendations and explanations to learn user-specific latent preference vectors, overcoming sparseness by label propagation with item-similarity-based neighborhoods. Our framework is instantiated using generalized graph recommendation via Random Walk with Restart. Insightful experiments with a real user study show significant improvements in movie and book recommendations over item-level feedback.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا