ﻻ يوجد ملخص باللغة العربية
We present a database of 45,000 atmospheric models (which will become 80,000 models by the end of the project) with stellar masses between 9 and 120 M$_{odot}$, covering the region of the OB main sequence and W-R stars in the H-R diagram. The models were calculated using the ABACUS I supercomputer and the stellar atmosphere code CMFGEN. The parameter space has 6 dimensions: the effective temperature $T_{rm eff}$, the luminosity $L$, the metallicity $Z$, and three stellar wind parameters, namely the exponent $beta$, the terminal velocity $V_{infty}$, and the volume filling factor $F_{cl}$. For each model, we also calculate synthetic spectra in the UV (900-2000 Angstroms), optical (3500-7000 Angstroms), and near IR (10000-30000 Angstroms) regions. To facilitate comparison with observations, the synthetic spectra were rotationally broaden using ROTIN3, by covering $v$ sin $i$ velocities between 10 and 350 km/s with steps of 10 km/s, resulting in a library of 1 575 000 synthetic spectra. In order to demonstrate the benefits of employing the databases of pre-calculated models, we also present the results of the re-analysis of $epsilon$ Ori by using our grid.
$Aims.$ We present a database of 43,340 atmospheric models ($sim$80,000 models at the conclusion of the project) for stars with stellar masses between 9 and 120 $M_{odot}$, covering the region of the OB main-sequence and Wolf-Rayet (W-R) stars in the
We present tests carried out on optical and infrared stellar spectra to evaluate the accuracy of different types of interpolation. Both model atmospheres and continuum normalized fluxes were interpolated. In the first case we used linear interpolatio
This paper describes the analysis of UVES and GIRAFFE spectra acquired by the Gaia-ESO Public Spectroscopic Survey in the fields of young clusters whose population includes pre-main sequence (PMS) stars. Both methods that have been extensively used i
The study of massive stars in different metallicity environments is a central topic of current stellar research. The spectral analysis of massive stars requires adequate model atmospheres. The computation of such models is difficult and time-consumin
We present an outline of basic assumptions and governing structural equations describing atmospheres of substellar mass objects, in particular the extrasolar giant planets and brown dwarfs. Although most of the presentation of the physical and numeri