ﻻ يوجد ملخص باللغة العربية
We present tests carried out on optical and infrared stellar spectra to evaluate the accuracy of different types of interpolation. Both model atmospheres and continuum normalized fluxes were interpolated. In the first case we used linear interpolation, and in the second linear, cubic spline, cubic-Bezier and quadratic-Bezier methods. We generated 400 ATLAS9 model atmospheres with random values of the atmospheric parameters for these tests, spanning between -2.5 and +0.5 in [Fe/H], from 4500 to 6250 K in effective temperature, and 1.5 to 4.5 dex in surface gravity. Synthesized spectra were created from these model atmospheres, and compared with spectra derived by interpolation. We found that the most accurate interpolation algorithm among those considered in flux space is cubic-Bezier, closely followed by quadratic-Bezier and cubic splines. Linear interpolation of model atmospheres results in errors about a factor of two larger than linear interpolation of fluxes, and about a factor of four larger than high order flux interpolations.
We present a high resolution synthetic spectral library, INTRIGOSS, designed for studying FGK stars. The library is based on atmosphere models computed with specified individual element abundances via ATLAS12 code. Normalized SPectra (NSP) and surfac
We present a database of 45,000 atmospheric models (which will become 80,000 models by the end of the project) with stellar masses between 9 and 120 M$_{odot}$, covering the region of the OB main sequence and W-R stars in the H-R diagram. The models
$Aims.$ We present a database of 43,340 atmospheric models ($sim$80,000 models at the conclusion of the project) for stars with stellar masses between 9 and 120 $M_{odot}$, covering the region of the OB main-sequence and Wolf-Rayet (W-R) stars in the
We present an outline of basic assumptions and governing structural equations describing atmospheres of substellar mass objects, in particular the extrasolar giant planets and brown dwarfs. Although most of the presentation of the physical and numeri
A line list of vibration-rotation transitions for 13C substituted HCN is presented. The line list is constructed using known experimental levels where available, calculated levels and ab initio line intensities originally calculated for the major iso