ﻻ يوجد ملخص باللغة العربية
When two objects at different temperatures are separated by a vacuum gap they can exchange heat by radiation only. At large separation distances (far-field regime) the amount of transferred heat flux is limited by Stefan-Boltzmanns law (blackbody limit). In contrast, at subwavelength distances (near-field regime) this limit can be exceeded by orders of magnitude thanks to the contributions of evanescent waves. This article reviews the recent progress on the passive and active control of near-field radiative heat exchange in two- and many-body systems.
Thermal control is of critical importance for normal operation of spacecraft. Given thermal radiation is the only means of heat dissipation in space, an efficient thermal control approach for spacecraft is to coat the radiator with a tunable-emittanc
We calculate, by means of fluctuational electrodynamics, the thermal emission of an aperture filled by vacuum or a material at temperature T. We show that thermal emission is very different whether the aperture size is large or small compared to the
Intense electromagnetic evanescent fields are thermally excited in near fields on material surfaces (at distances smaller than the wavelength of peak thermal radiation). The property of the fields is of strong interest for it is material-specific and
It is shown that thermally excited plasmon-polariton modes can strongly mediate, enhance and emph{tune} the near-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange on doping and electron
For an oscillating electric dipole in the shape of a small, solid, uniformly-polarized, spherical particle, we compute the self-field as well as the radiated electromagnetic field in the surrounding free space. The assumed geometry enables us to obta