ﻻ يوجد ملخص باللغة العربية
Intense electromagnetic evanescent fields are thermally excited in near fields on material surfaces (at distances smaller than the wavelength of peak thermal radiation). The property of the fields is of strong interest for it is material-specific and is important for understanding a variety of surface-related effects, such as friction forces, Casimir forces, near-field heat transfer, and surface-coupled molecular dynamics. On metal surfaces, relevance of surface plasmon polaritons (SPlPs), coupled to collective motion of conduction electrons, has attracted strong interest, but has not been explicitly clarified up to the present time. Here, using a passive terahertz (THz) near-field microscope with unprecedented high sensitivity, we unveil detailed nature of thermally generated evanescent fields (wavelength:lamda0~14.5micron) on metals at room temperature. Our experimental results unambiguously indicate that the thermal waves are short-wavelength fluctuating electromagnetic fields, from which relevance of SPlPs is ruled out.
Superconducting quantum circuits are one of the leading quantum computing platforms. To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoheren
Near-field optical microscopy by means of infrared photocurrent mapping has rapidly developed in recent years. In this letter we introduce a near-field induced contrast mechanism arising when a conducting surface, exhibiting a magnetic moment, is exp
Recently, the fundamental and nanoscale understanding of complex phenomena in materials research and the life sciences, witnessed considerable progress. However, elucidating the underlying mechanisms, governed by entangled degrees of freedom such as
We compare the behavior of propagating and evanescent light waves in absorbing media with that of electrons in the presence of inelastic scattering. The imaginary part of the dielectric constant results primarily in an exponential decay of a propagat
We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac fermions in graphene. This is achieved by confining mid-IR radiation at the apex of a nanoscale tip: an approach yielding two orders of magnitude increase in the value of in-plan