ﻻ يوجد ملخص باللغة العربية
For an oscillating electric dipole in the shape of a small, solid, uniformly-polarized, spherical particle, we compute the self-field as well as the radiated electromagnetic field in the surrounding free space. The assumed geometry enables us to obtain the exact solution of Maxwells equations as a function of the dipole moment, the sphere radius, and the oscillation frequency. The self field, which is responsible for the radiation resistance, does not introduce acausal or otherwise anomalous behavior into the dynamics of the bound electrical charges that comprise the dipole. Departure from causality, a well-known feature of the dynamical response of a charged particle to an externally applied force, is shown to arise when the charge is examined in isolation, namely in the absence of the restraining force of an equal but opposite charge that is inevitably present in a dipole radiator. Even in this case, the acausal behavior of the (free) charged particle appears to be rooted in the approximations used to arrive at an estimate of the self-force. When the exact expression of the self-force is used, our numerical analysis indicates that the impulse-response of the particle should remain causal.
A uniformly-charged spherical shell of radius $R$, mass $m$, and total electrical charge $q$, having an oscillatory angular velocity $Omega(t)$ around a fixed axis, is a model for a magnetic dipole that radiates an electromagnetic field into its surr
In this tutorial, we discuss the radiation from a Hertzian dipole into uniform isotropic lossy media of infinite extent. If the medium is lossless, the radiated power propagates to infinity, and the apparent dissipation is measured by the radiation r
A decomposition of the angular momentum of the classical electromagnetic field into orbital and spin components that is manifestly gauge invariant and general has been obtained. This is done by decomposing the electric field into its longitudinal and
We show how to derive a consistent quantum theory of radiation reaction of a non-relativistic point-dipole quantum oscillator by including the dynamical fluctuations of the position of the dipole. The proposed non-linear theory displays neither runaw
We construct a novel Lagrangian representation of acoustic field theory that describes the local vector properties of longitudinal (curl-free) acoustic fields. In particular, this approach accounts for the recently-discovered nonzero spin angular mom