ﻻ يوجد ملخص باللغة العربية
Modelling disease progression of iron deficiency anaemia (IDA) following oral iron supplement prescriptions is a prerequisite for evaluating the cost-effectiveness of oral iron supplements. Electronic health records (EHRs) from the Clinical Practice Research Datalink (CPRD) provide rich longitudinal data on IDA disease progression in patients registered with 663 General Practitioner (GP) practices in the UK, but they also create challenges in statistical analyses. First, the CPRD data are clustered at multi-levels (i.e., GP practices and patients), but their large volume makes it computationally difficult to implement estimation of standard random effects models for multi-level data. Second, observation times in the CPRD data are irregular and could be informative about the disease progression. For example, shorter/longer gap times between GP visits could be associated with deteriorating/improving IDA. Existing methods to address informative observation times are mostly based on complex joint models, which adds more computational burden. To tackle these challenges, we develop a computationally efficient approach to modelling disease progression with EHRs data while accounting for variability at multi-level clusters and informative observation times. We apply the proposed method to the CPRD data to investigate IDA improvement and treatment intolerance following oral iron prescriptions in primary care of the UK.
Analyzing electronic health records (EHR) poses significant challenges because often few samples are available describing a patients health and, when available, their information content is highly diverse. The problem we consider is how to integrate
We develop a new methodology for spatial regression of aggregated outputs on multi-resolution covariates. Such problems often occur with spatial data, for example in crop yield prediction, where the output is spatially-aggregated over an area and the
Although increasingly used as a data resource for assembling cohorts, electronic health records (EHRs) pose many analytic challenges. In particular, a patients health status influences when and what data are recorded, generating sampling bias in the
This paper aims to enhance our understanding of substantive questions regarding self-reported happiness and well-being through the specification and use of multi-level models. To date, there have been numerous quantitative research studies of the hap
Voluntary medical male circumcision (VMMC) reduces the risk of male HIV acquisition by 60%. Programmes to provide male circumcision (MC) to prevent HIV infection have been introduced in sub-Saharan African countries with high HIV burden. While large-