ترغب بنشر مسار تعليمي؟ اضغط هنا

Recurrent Events Analysis With Data Collected at Informative Clinical Visits in Electronic Health Records

185   0   0.0 ( 0 )
 نشر من قبل Yifei Sun
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Although increasingly used as a data resource for assembling cohorts, electronic health records (EHRs) pose many analytic challenges. In particular, a patients health status influences when and what data are recorded, generating sampling bias in the collected data. In this paper, we consider recurrent event analysis using EHR data. Conventional regression methods for event risk analysis usually require the values of covariates to be observed throughout the follow-up period. In EHR databases, time-dependent covariates are intermittently measured during clinical visits, and the timing of these visits is informative in the sense that it depends on the disease course. Simple methods, such as the last-observation-carried-forward approach, can lead to biased estimation. On the other hand, complex joint models require additional assumptions on the covariate process and cannot be easily extended to handle multiple longitudinal predictors. By incorporating sampling weights derived from estimating the observation time process, we develop a novel estimation procedure based on inverse-rate-weighting and kernel-smoothing for the semiparametric proportional rate model of recurrent events. The proposed methods do not require model specifications for the covariate processes and can easily handle multiple time-dependent covariates. Our methods are applied to a kidney transplant study for illustration.

قيم البحث

اقرأ أيضاً

Deep learning models have shown tremendous potential in learning representations, which are able to capture some key properties of the data. This makes them great candidates for transfer learning: Exploiting commonalities between different learning t asks to transfer knowledge from one task to another. Electronic health records (EHR) research is one of the domains that has witnessed a growing number of deep learning techniques employed for learning clinically-meaningful representations of medical concepts (such as diseases and medications). Despite this growth, the approaches to benchmark and assess such learned representations (or, embeddings) is under-investigated; this can be a big issue when such embeddings are shared to facilitate transfer learning. In this study, we aim to (1) train some of the most prominent disease embedding techniques on a comprehensive EHR data from 3.1 million patients, (2) employ qualitative and quantitative evaluation techniques to assess these embeddings, and (3) provide pre-trained disease embeddings for transfer learning. This study can be the first comprehensive approach for clinical concept embedding evaluation and can be applied to any embedding techniques and for any EHR concept.
In electronic health records (EHRs), latent subgroups of patients may exhibit distinctive patterning in their longitudinal health trajectories. For such data, growth mixture models (GMMs) enable classifying patients into different latent classes base d on individual trajectories and hypothesized risk factors. However, the application of GMMs is hindered by the special missing data problem in EHRs, which manifests two patient-led missing data processes: the visit process and the response process for an EHR variable conditional on a patient visiting the clinic. If either process is associated with the process generating the longitudinal outcomes, then valid inferences require accounting for a nonignorable missing data mechanism. We propose a Bayesian shared parameter model that links GMMs of multiple longitudinal health outcomes, the visit process, and the response process of each outcome given a visit using a discrete latent class variable. Our focus is on multiple longitudinal health outcomes for which there can be a clinically prescribed visit schedule. We demonstrate our model in EHR measurements on early childhood weight and height z-scores. Using data simulations, we illustrate the statistical properties of our method with respect to subgroup-specific or marginal inferences. We built the R package EHRMiss for model fitting, selection, and checking.
Readily available proxies for time of disease onset such as time of the first diagnostic code can lead to substantial risk prediction error if performing analyses based on poor proxies. Due to the lack of detailed documentation and labor intensivenes s of manual annotation, it is often only feasible to ascertain for a small subset the current status of the disease by a follow up time rather than the exact time. In this paper, we aim to develop risk prediction models for the onset time efficiently leveraging both a small number of labels on current status and a large number of unlabeled observations on imperfect proxies. Under a semiparametric transformation model for onset and a highly flexible measurement error models for proxy onset time, we propose the semisupervised risk prediction method by combining information from proxies and limited labels efficiently. From an initial estimator solely based on the labelled subset, we perform a one-step correction with the full data augmenting against a mean zero rank correlation score derived from the proxies. We establish the consistency and asymptotic normality of the proposed semi-supervised estimator and provide a resampling procedure for interval estimation. Simulation studies demonstrate that the proposed estimator performs well in finite sample. We illustrate the proposed estimator by developing a genetic risk prediction model for obesity using data from Partners Biobank Electronic Health Records (EHR).
In the electronic health record, using clinical notes to identify entities such as disorders and their temporality (e.g. the order of an event relative to a time index) can inform many important analyses. However, creating training data for clinical entity tasks is time consuming and sharing labeled data is challenging due to privacy concerns. The information needs of the COVID-19 pandemic highlight the need for agile methods of training machine learning models for clinical notes. We present Trove, a framework for weakly supervised entity classification using medical ontologies and expert-generated rules. Our approach, unlike hand-labeled notes, is easy to share and modify, while offering performance comparable to learning from manually labeled training data. In this work, we validate our framework on six benchmark tasks and demonstrate Troves ability to analyze the records of patients visiting the emergency department at Stanford Health Care for COVID-19 presenting symptoms and risk factors.
Electronic health records represent a holistic overview of patients trajectories. Their increasing availability has fueled new hopes to leverage them and develop accurate risk prediction models for a wide range of diseases. Given the complex interrel ationships of medical records and patient outcomes, deep learning models have shown clear merits in achieving this goal. However, a key limitation of these models remains their capacity in processing long sequences. Capturing the whole history of medical encounters is expected to lead to more accurate predictions, but the inclusion of records collected for decades and from multiple resources can inevitably exceed the receptive field of the existing deep learning architectures. This can result in missing crucial, long-term dependencies. To address this gap, we present Hi-BEHRT, a hierarchical Transformer-based model that can significantly expand the receptive field of Transformers and extract associations from much longer sequences. Using a multimodal large-scale linked longitudinal electronic health records, the Hi-BEHRT exceeds the state-of-the-art BEHRT 1% to 5% for area under the receiver operating characteristic (AUROC) curve and 3% to 6% for area under the precision recall (AUPRC) curve on average, and 3% to 6% (AUROC) and 3% to 11% (AUPRC) for patients with long medical history for 5-year heart failure, diabetes, chronic kidney disease, and stroke risk prediction. Additionally, because pretraining for hierarchical Transformer is not well-established, we provide an effective end-to-end contrastive pre-training strategy for Hi-BEHRT using EHR, improving its transferability on predicting clinical events with relatively small training dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا