ﻻ يوجد ملخص باللغة العربية
Recent research analyzing the sensitivity of natural language understanding models to word-order perturbations have shown that the state-of-the-art models in several language tasks may have a unique way to understand the text that could seldom be explained with conventional syntax and semantics. In this paper, we investigate the insensitivity of natural language models to word-order by quantifying perturbations and analysing their effect on neural models performance on language understanding tasks in GLUE benchmark. Towards that end, we propose two metrics - the Direct Neighbour Displacement (DND) and the Index Displacement Count (IDC) - that score the local and global ordering of tokens in the perturbed texts and observe that perturbation functions found in prior literature affect only the global ordering while the local ordering remains relatively unperturbed. We propose perturbations at the granularity of sub-words and characters to study the correlation between DND, IDC and the performance of neural language models on natural language tasks. We find that neural language models - pretrained and non-pretrained Transformers, LSTMs, and Convolutional architectures - require local ordering more so than the global ordering of tokens. The proposed metrics and the suite of perturbations allow a systematic way to study the (in)sensitivity of neural language understanding models to varying degree of perturbations.
We present two supervised (pre-)training methods to incorporate gloss definitions from lexical resources into neural language models (LMs). The training improves our models performance for Word Sense Disambiguation (WSD) but also benefits general lan
Recently, bidirectional recurrent network language models (bi-RNNLMs) have been shown to outperform standard, unidirectional, recurrent neural network language models (uni-RNNLMs) on a range of speech recognition tasks. This indicates that future wor
Neural networks are among the state-of-the-art techniques for language modeling. Existing neural language models typically map discrete words to distributed, dense vector representations. After information processing of the preceding context words by
Neural language models trained with a predictive or masked objective have proven successful at capturing short and long distance syntactic dependencies. Here, we focus on verb argument structure in German, which has the interesting property that verb
The neural language models (NLM) achieve strong generalization capability by learning the dense representation of words and using them to estimate probability distribution function. However, learning the representation of rare words is a challenging