ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural language modeling of free word order argument structure

93   0   0.0 ( 0 )
 نشر من قبل Charlotte Rochereau
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural language models trained with a predictive or masked objective have proven successful at capturing short and long distance syntactic dependencies. Here, we focus on verb argument structure in German, which has the interesting property that verb arguments may appear in a relatively free order in subordinate clauses. Therefore, checking that the verb argument structure is correct cannot be done in a strictly sequential fashion, but rather requires to keep track of the arguments cases irrespective of their orders. We introduce a new probing methodology based on minimal variation sets and show that both Transformers and LSTM achieve a score substantially better than chance on this test. As humans, they also show graded judgments preferring canonical word orders and plausible case assignments. However, we also found unexpected discrepancies in the strength of these effects, the LSTMs having difficulties rejecting ungrammatical sentences containing frequent argument structure types (double nominatives), and the Transformers tending to overgeneralize, accepting some infrequent word orders or implausible sentences that humans barely accept.



قيم البحث

اقرأ أيضاً

Recent research analyzing the sensitivity of natural language understanding models to word-order perturbations have shown that the state-of-the-art models in several language tasks may have a unique way to understand the text that could seldom be exp lained with conventional syntax and semantics. In this paper, we investigate the insensitivity of natural language models to word-order by quantifying perturbations and analysing their effect on neural models performance on language understanding tasks in GLUE benchmark. Towards that end, we propose two metrics - the Direct Neighbour Displacement (DND) and the Index Displacement Count (IDC) - that score the local and global ordering of tokens in the perturbed texts and observe that perturbation functions found in prior literature affect only the global ordering while the local ordering remains relatively unperturbed. We propose perturbations at the granularity of sub-words and characters to study the correlation between DND, IDC and the performance of neural language models on natural language tasks. We find that neural language models - pretrained and non-pretrained Transformers, LSTMs, and Convolutional architectures - require local ordering more so than the global ordering of tokens. The proposed metrics and the suite of perturbations allow a systematic way to study the (in)sensitivity of neural language understanding models to varying degree of perturbations.
154 - Zhiqing Sun , Zhi-Hong Deng 2018
Previous traditional approaches to unsupervised Chinese word segmentation (CWS) can be roughly classified into discriminative and generative models. The former uses the carefully designed goodness measures for candidate segmentation, while the latter focuses on finding the optimal segmentation of the highest generative probability. However, while there exists a trivial way to extend the discriminative models into neural version by using neural language models, those of generative ones are non-trivial. In this paper, we propose the segmental language models (SLMs) for CWS. Our approach explicitly focuses on the segmental nature of Chinese, as well as preserves several properties of language models. In SLMs, a context encoder encodes the previous context and a segment decoder generates each segment incrementally. As far as we know, we are the first to propose a neural model for unsupervised CWS and achieve competitive performance to the state-of-the-art statistical models on four different datasets from SIGHAN 2005 bakeoff.
A possible explanation for the impressive performance of masked language model (MLM) pre-training is that such models have learned to represent the syntactic structures prevalent in classical NLP pipelines. In this paper, we propose a different expla nation: MLMs succeed on downstream tasks almost entirely due to their ability to model higher-order word co-occurrence statistics. To demonstrate this, we pre-train MLMs on sentences with randomly shuffled word order, and show that these models still achieve high accuracy after fine-tuning on many downstream tasks -- including on tasks specifically designed to be challenging for models that ignore word order. Our models perform surprisingly well according to some parametric syntactic probes, indicating possible deficiencies in how we test representations for syntactic information. Overall, our results show that purely distributional information largely explains the success of pre-training, and underscore the importance of curating challenging evaluation datasets that require deeper linguistic knowledge.
127 - Zhiyuan Guo , Yuexin Li , Guo Chen 2021
Spoken dialogue systems such as Siri and Alexa provide great convenience to peoples everyday life. However, current spoken language understanding (SLU) pipelines largely depend on automatic speech recognition (ASR) modules, which require a large amou nt of language-specific training data. In this paper, we propose a Transformer-based SLU system that works directly on phones. This acoustic-based SLU system consists of only two blocks and does not require the presence of ASR module. The first block is a universal phone recognition system, and the second block is a Transformer-based language model for phones. We verify the effectiveness of the system on an intent classification dataset in Mandarin Chinese.
Recently, bidirectional recurrent network language models (bi-RNNLMs) have been shown to outperform standard, unidirectional, recurrent neural network language models (uni-RNNLMs) on a range of speech recognition tasks. This indicates that future wor d context information beyond the word history can be useful. However, bi-RNNLMs pose a number of challenges as they make use of the complete previous and future word context information. This impacts both training efficiency and their use within a lattice rescoring framework. In this paper these issues are addressed by proposing a novel neural network structure, succeeding word RNNLMs (su-RNNLMs). Instead of using a recurrent unit to capture the complete future word contexts, a feedforward unit is used to model a finite number of succeeding, future, words. This model can be trained much more efficiently than bi-RNNLMs and can also be used for lattice rescoring. Experimental results on a meeting transcription task (AMI) show the proposed model consistently outperformed uni-RNNLMs and yield only a slight degradation compared to bi-RNNLMs in N-best rescoring. Additionally, performance improvements can be obtained using lattice rescoring and subsequent confusion network decoding.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا