ﻻ يوجد ملخص باللغة العربية
We present a theorem on the compatibility upon deployment of kirigami tessellations restricted on a spherical surface with patterned cuts forming freeform quadrilateral meshes. We show that the spherical kirigami tessellations have either one or two compatible states, i.e., there are at most two isolated strain-free configurations along the deployment path. The proof of the theorem is based on analyzing the number of roots of the compatibility condition, under which the kirigami pattern allows a piecewise isometric transformation between the undeployed and deployed configurations. As a degenerate case, the theorem further reveals that neutral equilibrium arises for planar quadrilateral kirigami tessellations if and only if the cuts form parallelogram voids. Our study provides new insights into the rational design of morphable structures based on Euclidean and non-Euclidean geometries.
The concept of kirigami has been extensively utilized to design deployable structures and reconfigurable metamaterials. Despite heuristic utilization of classical kirigami patterns, the gap between complex kirigami tessellations and systematic design
Kirigami, the art of introducing cuts in thin sheets to enable articulation and deployment, has till recently been the domain of artists. With the realization that these structures form a novel class of mechanical metamaterials, there is increasing i
The concept of splitting tessellations and splitting tessellation processes in spherical spaces of dimension $dgeq 2$ is introduced. Expectations, variances and covariances of spherical curvature measures induced by a splitting tessellation are studi
Kirigami involves cutting a flat, thin sheet that allows it to morph from a closed, compact configuration into an open deployed structure via coordinated rotations of the internal tiles. By recognizing and generalizing the geometric constraints that
Kirigami, the art of paper cutting, has become a paradigm for mechanical metamaterials in recent years. The basic building blocks of any kirigami structures are repetitive deployable patterns that derive inspiration from geometric art forms and simpl