ﻻ يوجد ملخص باللغة العربية
Kirigami, the art of introducing cuts in thin sheets to enable articulation and deployment, has till recently been the domain of artists. With the realization that these structures form a novel class of mechanical metamaterials, there is increasing interest in using periodic tiling patterns as the basis for the space of designs. Here, we show that aperiodic quasicrystals can also serve as the basis for designing deployable kirigami structures and analyze their geometrical, topological and mechanical properties. Our work explores the interplay between geometry, topology and mechanics for the design of aperiodic kirigami patterns, thereby enriching our understanding of the effectiveness of kirigami cuts in metamaterial design.
Kirigami involves cutting a flat, thin sheet that allows it to morph from a closed, compact configuration into an open deployed structure via coordinated rotations of the internal tiles. By recognizing and generalizing the geometric constraints that
Kirigami, the art of paper cutting, has become a paradigm for mechanical metamaterials in recent years. The basic building blocks of any kirigami structures are repetitive deployable patterns that derive inspiration from geometric art forms and simpl
The incommensurate 30$^{circ}$ twisted bilayer graphene possesses both relativistic Dirac fermions and quasiperiodicity with 12-fold rotational symmetry arising from the interlayer interaction [Ahn et al., Science textbf{361}, 782 (2018) and Yao et a
Quasicrystals are metallic alloys that possess long-range, aperiodic structures with diffraction symmetries forbidden to conventional crystals. Since the discovery of quasicrystals by Schechtman et al. at 1984 (ref. 1), there has been considerable pr
Dodecagonal bilayer graphene quasicrystal has 12-fold rotational order but lacks translational symmetry which prevents the application of band theory. In this paper, we study the electronic and optical properties of graphene quasicrystal with large-s