ﻻ يوجد ملخص باللغة العربية
The concept of kirigami has been extensively utilized to design deployable structures and reconfigurable metamaterials. Despite heuristic utilization of classical kirigami patterns, the gap between complex kirigami tessellations and systematic design principles still needs to be filled. In this paper, we develop a unified design method for deployable quadrilateral kirigami tessellations perforated on flat sheets with different topologies. This method is based on the parameterization of kirigami patterns formulated as the solution of a linear equation system. The geometric constraints for the deployability of parameterized cutting patterns are given by a unified theorem covering different topologies of the flat sheets. As an application, we employ the design method to achieve desired shapes along the deployment path of kirigami tessellations, while preserving the topological characteristics of the flat sheets. Our approach introduces new perspectives for the topological design of kirigami-inspired structures and metamaterials.
We present a theorem on the compatibility upon deployment of kirigami tessellations restricted on a spherical surface with patterned cuts forming freeform quadrilateral meshes. We show that the spherical kirigami tessellations have either one or two
Shape-morphing finds widespread utility, from the deployment of small stents and large solar sails to actuation and propulsion in soft robotics. Origami structures provide a template for shape-morphing, but rules for designing and folding the structu
Kirigami, the art of introducing cuts in thin sheets to enable articulation and deployment, has till recently been the domain of artists. With the realization that these structures form a novel class of mechanical metamaterials, there is increasing i
Kirigami involves cutting a flat, thin sheet that allows it to morph from a closed, compact configuration into an open deployed structure via coordinated rotations of the internal tiles. By recognizing and generalizing the geometric constraints that
Kirigami, the art of paper cutting, has become a paradigm for mechanical metamaterials in recent years. The basic building blocks of any kirigami structures are repetitive deployable patterns that derive inspiration from geometric art forms and simpl