ﻻ يوجد ملخص باللغة العربية
Surface effect responsible for some size-dependent characteristics can become distinctly important for piezoelectric nanomaterials with inherent large surface-to-volume ratio. In this paper, we investigate the surface effect on the free vibration behavior of a spherically isotropic piezoelectric nanosphere. Instead of directly using the well-known Huang-Yu surface piezoelectricity theory (HY theory), another general framework based on a thin shell layer model is proposed. A novel approach is developed to establish the surface piezoelectricity theory or the effective boundary conditions for piezoelectric nanospheres employing the state-space formalism. Three different sources of surface effect can be identified in the first-order surface piezoelectricity, i.e. the electroelastic effect, the inertia effect, and the thickness effect. It is found that the proposed theory becomes identical to the HY theory for a spherical material boundary if the transverse stress (TS) components are discarded and the electromechanical properties are properly defined. The nonaxisymmetric free vibration of a piezoelectric nanosphere with surface effect is then studied and an exact solution is obtained. In order to investigate the surface effect on the natural frequencies of piezoelectric nanospheres, numerical calculations are finally performed. Our numerical findings demonstrate that the surface effect, especially the thickness effect, may have a particularly significant influence on the free vibration of piezoelectric nanospheres. This work provides a more accurate prediction of the dynamic characteristics of piezoelectric nanospherical devices in Nano-Electro-Mechanical Systems (NEMS).
An isogeometric Galerkin approach for analysing the free vibrations of piezoelectric shells is presented. The shell kinematics is specialised to infinitesimal deformations and follow the Kirchhoff-Love hypothesis. Both the geometry and physical field
Coarsening of bicontinuous microstructures is observed in a variety of systems, such as nanoporous metals and mixtures that have undergone spinodal decomposition. To better understand the morphological evolution of these structures during coarsening,
Lattice deformations act on the low-energy excitations of Dirac materials as effective axial vector fields. This allows to directly detect quantum anomalies of Dirac materials via the response to axial gauge fields. We investigate the parity anomaly
Surface plasmon polaritons in graphene couple strongly to surface phonons in polar substrates leading to hybridized surface plasmon-phonon polaritons (SPPPs). We demonstrate that a surface acoustic wave (SAW) can be used to launch propagating SPPPs i
The surface stress and the contact potential differences of elastically deformed faces of Al, Cu, Au, Ni, and Ti crystals are calculated within the modified stabilized jellium model using the self-consistent Kohn-Sham method. The obtained values of t