ترغب بنشر مسار تعليمي؟ اضغط هنا

Vibration Analysis of Piezoelectric Kirchhoff-Love Shells based on Catmull-Clark Subdivision Surfaces

362   0   0.0 ( 0 )
 نشر من قبل Zhaowei Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An isogeometric Galerkin approach for analysing the free vibrations of piezoelectric shells is presented. The shell kinematics is specialised to infinitesimal deformations and follow the Kirchhoff-Love hypothesis. Both the geometry and physical fields are discretised using Catmull-Clark subdivision bases. It provides the required C1 continuous discretisation for the Kirchhoff-Love theory. The crystalline structure of piezoelectric materials is described using an anisotropic constitutive relation. Hamiltons variational principle is applied to the dynamic analysis to derive the weak form of the governing equations. The coupled eigenvalue problem is formulated by considering the problem of harmonic vibration in the absence of external load. The formulation for the purely elastic case is verified using a spherical thin shell benchmark. Thereafter, the piezoelectric effect and vibration modes of a transverse isotropic curved plate are analysed and evaluated for the Scordelis-Lo roof problem. Finally, the eigenvalue analysis of a CAD model of a piezoelectric speaker shell structure showcases the ability of the proposed method to handle complex geometries.



قيم البحث

اقرأ أيضاً

An isogeometric approach for solving the Laplace-Beltrami equation on a two-dimensional manifold embedded in three-dimensional space using a Galerkin method based on Catmull-Clark subdivision surfaces is presented and assessed. The scalar-valued Lapl ace-Beltrami equation requires only C0 continuity and is adopted to elucidate key features and properties of the isogeometric method using Catmull-Clark subdivision surfaces. Catmull-Clark subdivision bases are used to discretise both the geometry and the physical field. A fitting method generates control meshes to approximate any given geometry with Catmull-Clark subdivision surfaces. The performance of the Catmull-Clark subdivision method is compared to the conventional finite element method. Subdivision surfaces without extraordinary vertices show the optimal convergence rate. However, extraordinary vertices introduce error, which decreases the convergence rate. A comparative study shows the effect of the number and valences of the extraordinary vertices on accuracy and convergence. An adaptive quadrature scheme is shown to reduce the error.
Stable and accurate modeling of thin shells requires proper enforcement of all types of boundary conditions. Unfortunately, for Kirchhoff-Love shells, strong enforcement of Dirichlet boundary conditions is difficult because both functional and deriva tive boundary conditions must be applied. A popular alternative is to employ Nitsches method to weakly enforce all boundary conditions. However, while many Nitsche-based formulations have been proposed in the literature, they lack comprehensive error analyses and verifications. In fact, existing formulations are variationally inconsistent and yield sub-optimal convergence rates when used with common boundary condition specifications. In this paper, we present a novel Nitsche-based formulation for the linear Kirchhoff-Love shell that is provably stable and optimally convergent for general sets of admissible boundary conditions. To arrive at our formulation, we first present a framework for constructing Nitsches method for any abstract variational constrained minimization problem. We then apply this framework to the linear Kirchhoff-Love shell and, for the particular case of NURBS-based isogeometric analysis, we prove that the resulting formulation yields optimal convergence rates in both the shell energy norm and the standard $L^2$-norm. In the process, we derive the Euler-Lagrange equations for general sets of admissible boundary conditions and show that the Euler-Lagrange boundary conditions typically presented in the literature is incorrect. We verify our formulation by manufacturing solutions for a new shell obstacle course that encompasses flat, parabolic, hyperbolic, and elliptic geometric configurations. These manufactured solutions allow us to robustly measure the error across the entire shell in contrast with current best practices where displacement and stress errors are only measured at specific locations.
We introduce a coupled finite and boundary element formulation for acoustic scattering analysis over thin shell structures. A triangular Loop subdivision surface discretisation is used for both geometry and analysis fields. The Kirchhoff-Love shell e quation is discretised with the finite element method and the Helmholtz equation for the acoustic field with the boundary element method. The use of the boundary element formulation allows the elegant handling of infinite domains and precludes the need for volumetric meshing. In the present work the subdivision control meshes for the shell displacements and the acoustic pressures have the same resolution. The corresponding smooth subdivision basis functions have the $C^1$ continuity property required for the Kirchhoff-Love formulation and are highly efficient for the acoustic field computations. We validate the proposed isogeometric formulation through a closed-form solution of acoustic scattering over a thin shell sphere. Furthermore, we demonstrate the ability of the proposed approach to handle complex geometries with arbitrary topology that provides an integrated isogeometric design and analysis workflow for coupled structural-acoustic analysis of shells.
Surface effect responsible for some size-dependent characteristics can become distinctly important for piezoelectric nanomaterials with inherent large surface-to-volume ratio. In this paper, we investigate the surface effect on the free vibration beh avior of a spherically isotropic piezoelectric nanosphere. Instead of directly using the well-known Huang-Yu surface piezoelectricity theory (HY theory), another general framework based on a thin shell layer model is proposed. A novel approach is developed to establish the surface piezoelectricity theory or the effective boundary conditions for piezoelectric nanospheres employing the state-space formalism. Three different sources of surface effect can be identified in the first-order surface piezoelectricity, i.e. the electroelastic effect, the inertia effect, and the thickness effect. It is found that the proposed theory becomes identical to the HY theory for a spherical material boundary if the transverse stress (TS) components are discarded and the electromechanical properties are properly defined. The nonaxisymmetric free vibration of a piezoelectric nanosphere with surface effect is then studied and an exact solution is obtained. In order to investigate the surface effect on the natural frequencies of piezoelectric nanospheres, numerical calculations are finally performed. Our numerical findings demonstrate that the surface effect, especially the thickness effect, may have a particularly significant influence on the free vibration of piezoelectric nanospheres. This work provides a more accurate prediction of the dynamic characteristics of piezoelectric nanospherical devices in Nano-Electro-Mechanical Systems (NEMS).
307 - Longfei Li , Hangjie Ji , Qi Tang 2021
In this work, we propose and develop efficient and accurate numerical methods for solving the Kirchhoff-Love plate model in domains with complex geometries. The algorithms proposed here employ curvilinear finite-difference methods for spatial discret ization of the governing PDEs on general composite overlapping grids. The coupling of different components of the composite overlapping grid is through numerical interpolations. However, interpolations introduce perturbation to the finite-difference discretization, which causes numerical instability for time-stepping schemes used to advance the resulted semi-discrete system. To address the instability, we propose to add a fourth-order hyper-dissipation to the spatially discretized system to stabilize its time integration; this additional dissipation term captures the essential upwinding effect of the original upwind scheme. The investigation of strategies for incorporating the upwind dissipation term into several time-stepping schemes (both explicit and implicit) leads to the development of four novel algorithms. For each algorithm, formulas for determining a stable time step and a sufficient dissipation coefficient on curvilinear grids are derived by performing a local Fourier analysis. Quadratic eigenvalue problems for a simplified model plate in 1D domain are considered to reveal the weak instability due to the presence of interpolating equations in the spatial discretization. This model problem is further investigated for the stabilization effects of the proposed algorithms. Carefully designed numerical experiments are carried out to validate the accuracy and stability of the proposed algorithms, followed by two benchmark problems to demonstrate the capability and efficiency of our approach for solving realistic applications. Results that concern the performance of the proposed algorithms are also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا