ترغب بنشر مسار تعليمي؟ اضغط هنا

An explainable two-dimensional single model deep learning approach for Alzheimers disease diagnosis and brain atrophy localization

162   0   0.0 ( 0 )
 نشر من قبل Fan Zhang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Early and accurate diagnosis of Alzheimers disease (AD) and its prodromal period mild cognitive impairment (MCI) is essential for the delayed disease progression and the improved quality of patientslife. The emerging computer-aided diagnostic methods that combine deep learning with structural magnetic resonance imaging (sMRI) have achieved encouraging results, but some of them are limit of issues such as data leakage and unexplainable diagnosis. In this research, we propose a novel end-to-end deep learning approach for automated diagnosis of AD and localization of important brain regions related to the disease from sMRI data. This approach is based on a 2D single model strategy and has the following differences from the current approaches: 1) Convolutional Neural Network (CNN) models of different structures and capacities are evaluated systemically and the most suitable model is adopted for AD diagnosis; 2) a data augmentation strategy named Two-stage Random RandAugment (TRRA) is proposed to alleviate the overfitting issue caused by limited training data and to improve the classification performance in AD diagnosis; 3) an explainable method of Grad-CAM++ is introduced to generate the visually explainable heatmaps that localize and highlight the brain regions that our model focuses on and to make our model more transparent. Our approach has been evaluated on two publicly accessible datasets for two classification tasks of AD vs. cognitively normal (CN) and progressive MCI (pMCI) vs. stable MCI (sMCI). The experimental results indicate that our approach outperforms the state-of-the-art approaches, including those using multi-model and 3D CNN methods. The resultant localization heatmaps from our approach also highlight the lateral ventricle and some disease-relevant regions of cortex, coincident with the commonly affected regions during the development of AD.



قيم البحث

اقرأ أيضاً

In recent years, many papers have reported state-of-the-art performance on Alzheimers Disease classification with MRI scans from the Alzheimers Disease Neuroimaging Initiative (ADNI) dataset using convolutional neural networks. However, we discover t hat when we split that data into training and testing sets at the subject level, we are not able to obtain similar performance, bringing the validity of many of the previous studies into question. Furthermore, we point out that previous works use different subsets of the ADNI data, making comparison across similar works tricky. In this study, we present the results of three splitting methods, discuss the motivations behind their validity, and report our results using all of the available subjects.
The identification of Alzheimers disease (AD) and its early stages using structural magnetic resonance imaging (MRI) has been attracting the attention of researchers. Various data-driven approaches have been introduced to capture subtle and local mor phological changes of the brain accompanied by the disease progression. One of the typical approaches for capturing subtle changes is patch-level feature representation. However, the predetermined regions to extract patches can limit classification performance by interrupting the exploration of potential biomarkers. In addition, the existing patch-level analyses have difficulty explaining their decision-making. To address these problems, we propose the BrainBagNet with a position-based gate (PG-BrainBagNet), a framework for jointly learning pathological region localization and AD diagnosis in an end-to-end manner. In advance, as all scans are aligned to a template in image processing, the position of brain images can be represented through the 3D Cartesian space shared by the overall MRI scans. The proposed method represents the patch-level response from whole-brain MRI scans and discriminative brain-region from position information. Based on the outcomes, the patch-level class evidence is calculated, and then the image-level prediction is inferred by a transparent aggregation. The proposed models were evaluated on the ADNI datasets. In five-fold cross-validation, the classification performance of the proposed method outperformed that of the state-of-the-art methods in both AD diagnosis (AD vs. normal control) and mild cognitive impairment (MCI) conversion prediction (progressive MCI vs. stable MCI) tasks. In addition, changes in the identified discriminant regions and patch-level class evidence according to the patch size used for model training are presented and analyzed.
The current state-of-the-art deep neural networks (DNNs) for Alzheimers Disease diagnosis use different biomarker combinations to classify patients, but do not allow extracting knowledge about the interactions of biomarkers. However, to improve our u nderstanding of the disease, it is paramount to extract such knowledge from the learned model. In this paper, we propose a Deep Factorization Machine model that combines the ability of DNNs to learn complex relationships and the ease of interpretability of a linear model. The proposed model has three parts: (i) an embedding layer to deal with sparse categorical data, (ii) a Factorization Machine to efficiently learn pairwise interactions, and (iii) a DNN to implicitly model higher order interactions. In our experiments on data from the Alzheimers Disease Neuroimaging Initiative, we demonstrate that our proposed model classifies cognitive normal, mild cognitive impaired, and demented patients more accurately than competing models. In addition, we show that valuable knowledge about the interactions among biomarkers can be obtained.
Recently, the coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries, influencing billions of humans. To control the infection, identifying and separating the infected people is the most crucial step. The main diagnos tic tool is the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. Still, the sensitivity of the RT-PCR test is not high enough to effectively prevent the pandemic. The chest CT scan test provides a valuable complementary tool to the RT-PCR test, and it can identify the patients in the early-stage with high sensitivity. However, the chest CT scan test is usually time-consuming, requiring about 21.5 minutes per case. This paper develops a novel Joint Classification and Segmentation (JCS) system to perform real-time and explainable COVID-19 chest CT diagnosis. To train our JCS system, we construct a large scale COVID-19 Classification and Segmentation (COVID-CS) dataset, with 144,167 chest CT images of 400 COVID-19 patients and 350 uninfected cases. 3,855 chest CT images of 200 patients are annotated with fine-grained pixel-level labels of opacifications, which are increased attenuation of the lung parenchyma. We also have annotated lesion counts, opacification areas, and locations and thus benefit various diagnosis aspects. Extensive experiments demonstrate that the proposed JCS diagnosis system is very efficient for COVID-19 classification and segmentation. It obtains an average sensitivity of 95.0% and a specificity of 93.0% on the classification test set, and 78.5% Dice score on the segmentation test set of our COVID-CS dataset. The COVID-CS dataset and code are available at https://github.com/yuhuan-wu/JCS.
112 - Haibo Qi , Yuhan Wang , Xinyu Liu 2021
In this paper, a 3D-RegNet-based neural network is proposed for diagnosing the physical condition of patients with coronavirus (Covid-19) infection. In the application of clinical medicine, lung CT images are utilized by practitioners to determine wh ether a patient is infected with coronavirus. However, there are some laybacks can be considered regarding to this diagnostic method, such as time consuming and low accuracy. As a relatively large organ of human body, important spatial features would be lost if the lungs were diagnosed utilizing two dimensional slice image. Therefore, in this paper, a deep learning model with 3D image was designed. The 3D image as input data was comprised of two-dimensional pulmonary image sequence and from which relevant coronavirus infection 3D features were extracted and classified. The results show that the test set of the 3D model, the result: f1 score of 0.8379 and AUC value of 0.8807 have been achieved.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا