ترغب بنشر مسار تعليمي؟ اضغط هنا

HR-pyPopStar: high wavelength-resolution stellar populations evolutionary synthesis model

65   0   0.0 ( 0 )
 نشر من قبل Iker Mill\\'an-Irigoyen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the HR-pyPopStar model, which provides a complete set (in ages) of high resolution (HR) Spectral Energy Distributions of Single Stellar Populations. The model uses the most recent high wavelength-resolution theoretical atmosphere libraries for main sequence, post-AGB/planetary nebulae and Wolf-Rayet stars. The Spectral Energy Distributions are given for more than a hundred ages ranging from 0.1 Myr to 13.8 Gyr, at four different values of the metallicity (Z = 0.004, 0.008, 0.019 and 0.05), considering four different IMFs. The wavelength range goes from 91 to 24 000 {AA} in linear steps {delta}{lambda} = 0.1 {AA}, giving a theoretical resolving power R_{th,5000} ~ 50 000 at 5000 {AA}. This is the main novelty of these spectra, unique for their age and wavelength ranges. The models include the ionising stellar populations that are relevant both at young (massive hot stars) as well as old (planetary nebulae) ages. We have tested the results with some examples of HR spectra recently observed with MEGARA at GTC. We highlight the importance of wavelength-resolution in reproducing and interpreting the observational data from the last and forthcoming generations of astronomical instruments operating at 8-10m class telescopes, with higher spectral resolution than their predecessors.



قيم البحث

اقرأ أيضاً

We present PEGASE-HR, a new stellar population synthesis program generating high resolution spectra (R=10 000) over the optical range lambda=400--680 nm. It links the spectro-photometric model of galaxy evolution PEGASE.2 (Fioc & Rocca-Volmerange 199 7) to an updated version of the ELODIE library of stellar spectra observed with the 193 cm telescope at the Observatoire de Haute-Provence (Prugniel & Soubiran 2001a). The ELODIE star set gives a fairly complete coverage of the Hertzprung-Russell (HR) diagram and makes it possible to synthesize populations in the range [Fe/H]=-2 to +0.4. This code is an exceptional tool for exploring signatures of metallicity, age, and kinematics. We focus on a detailed study of the sensitivity to age and metallicity of the high-resolution stellar absorption lines and of the classical metallic indices proposed until now to solve the age-metallicity degeneracy. Validity tests on several stellar lines are performed by comparing our predictions for Lick indices to the models of other groups. The comparison with the lower resolution library BaSeL (Lejeune et al. 1997) confirms the quality of the ELODIE library when used for simple stellar populations (SSPs) from 10 Myr to 20 Gyr. Predictions for the evolved populations of globular clusters and elliptical galaxies are given and compared to observational data. Two new high-resolution indices are proposed around the Hgamma line. They should prove useful in the analysis of spectra from the new generation of telescopes and spectrographs.
Determining the properties of old stellar populations (those with age >1 Gyr) has long involved the comparison of their integrated light, either in the form of photometry or spectroscopic indexes, with empirical or synthetic templates. Here we reeval uate the properties of old stellar populations using a new set of stellar population synthesis models, designed to incorporate the effects of binary stellar evolution pathways as a function of stellar mass and age. We find that single-aged stellar population models incorporating binary stars, as well as new stellar evolution and atmosphere models, can reproduce the colours and spectral indices observed in both globular clusters and quiescent galaxies. The best fitting model populations are often younger than those derived from older spectral synthesis models, and may also lie at slightly higher metallicities.
132 - Ariane Lanc{c}on 2010
The evolution of AGB stars is notoriously complex. The confrontation of AGB population models with observed stellar populations is a useful alternative to the detailed study of individual stars in efforts to converge towards a reliable evolution theo ry. I review here the impact of studies of star clusters on AGB models and AGB population synthesis, deliberately leaving out any more complex stellar populations. Over the last 10 years, despite much effort, the absolute uncertainties in the predictions of the light emitted by intermediate age populations have not been reduced to a satisfactory level. Observational sample definitions, as well as the combination of the natural variance in AGB properties with small number statistics, are largely responsible for this situation. There is hope that the constraints may soon become strong enough, thanks to large unbiased surveys of star clusters, resolved colour-magnitude diagrams, and new analysis methods that can account for the stochastic nature of AGB populations in clusters.
We present a Bayesian method to determine simultaneously the age, metallicity, distance modulus, and interstellar reddening by dust of any resolved stellar population, by comparing the observed and synthetic color magnitude diagrams on a star by star basis, with no need to bin the data into a carefully selected magnitude grid. We test the method with mock stellar populations, and show that it works correctly even for scarce stellar populations with only one or two hundred stars above the main sequence turn off. If the population is the result of two star formation bursts, we can infer the contribution of each event to the total stellar population. The code works automatically and has already been used to study massive amounts of Magellanic clouds photometric data. In this paper we analyze in detail three Large Magellanic Cloud star clusters and 6 Ultra Faint Dwarf Galaxies. For these galaxies we recover physical parameters in agreement with those quoted in the literature, age $sim13.7$ Gyr and a very low metallicity $log,Zsim-4$. Searching for multiple populations in these galaxies, we find, at a very low significance level, signs of a double stellar population for Ursa Major I: a dominant old population and a younger one which contributes $sim25$% of the stars, in agreement with independent results from other authors.
We observe two metal-poor main sequence stars that are members of the recently-discovered Sylgr stellar stream. We present radial velocities, stellar parameters, and abundances for 13 elements derived from high-resolution optical spectra collected us ing the Magellan Inamori Kyocera Echelle spectrograph. The two stars have identical compositions (within 0.13 dex or 1.2 sigma) among all elements detected. Both stars are very metal poor ([Fe/H] = -2.92 +/- 0.06). Neither star is highly enhanced in C ([C/Fe] < +1.0). Both stars are enhanced in the alpha elements Mg, Si, and Ca ([alpha/Fe] = +0.32 +/- 0.06), and ratios among Na, Al, and all Fe-group elements are typical for other stars in the halo and ultra-faint and dwarf spheroidal galaxies at this metallicity. Sr is mildly enhanced ([Sr/Fe] = +0.22 +/- 0.11), but Ba is not enhanced ([Ba/Fe] < -0.4), indicating that these stars do not contain high levels of neutron-capture elements. The Li abundances match those found in metal-poor unevolved field stars and globular clusters (log epsilon (Li) = 2.05 +/- 0.07), which implies that environment is not a dominant factor in determining the Li content of metal-poor stars. The chemical compositions of these two stars cannot distinguish whether the progenitor of the Sylgr stream was a dwarf galaxy or a globular cluster. If the progenitor was a dwarf galaxy, the stream may originate from a dense region such as a nuclear star cluster. If the progenitor was a globular cluster, it would be the most metal-poor globular cluster known.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا