ترغب بنشر مسار تعليمي؟ اضغط هنا

High Resolution Optical Spectroscopy of Stars in the Sylgr Stellar Stream

262   0   0.0 ( 0 )
 نشر من قبل Ian Roederer
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observe two metal-poor main sequence stars that are members of the recently-discovered Sylgr stellar stream. We present radial velocities, stellar parameters, and abundances for 13 elements derived from high-resolution optical spectra collected using the Magellan Inamori Kyocera Echelle spectrograph. The two stars have identical compositions (within 0.13 dex or 1.2 sigma) among all elements detected. Both stars are very metal poor ([Fe/H] = -2.92 +/- 0.06). Neither star is highly enhanced in C ([C/Fe] < +1.0). Both stars are enhanced in the alpha elements Mg, Si, and Ca ([alpha/Fe] = +0.32 +/- 0.06), and ratios among Na, Al, and all Fe-group elements are typical for other stars in the halo and ultra-faint and dwarf spheroidal galaxies at this metallicity. Sr is mildly enhanced ([Sr/Fe] = +0.22 +/- 0.11), but Ba is not enhanced ([Ba/Fe] < -0.4), indicating that these stars do not contain high levels of neutron-capture elements. The Li abundances match those found in metal-poor unevolved field stars and globular clusters (log epsilon (Li) = 2.05 +/- 0.07), which implies that environment is not a dominant factor in determining the Li content of metal-poor stars. The chemical compositions of these two stars cannot distinguish whether the progenitor of the Sylgr stream was a dwarf galaxy or a globular cluster. If the progenitor was a dwarf galaxy, the stream may originate from a dense region such as a nuclear star cluster. If the progenitor was a globular cluster, it would be the most metal-poor globular cluster known.

قيم البحث

اقرأ أيضاً

The $100^circ$-long thin stellar stream in the Milky Way halo, GD-1, has an ensemble of features that may be due to dynamical interactions. Using high-resolution MMT/Hectochelle spectroscopy we show that a spur of GD-1-like stars outside of the main stream are kinematically and chemically consistent with the main stream. In the spur, as in the main stream, GD-1 has a low intrinsic radial velocity dispersion, $sigma_{V_r}lesssim1,rm km,s^{-1}$, is metal-poor, $rm [Fe/H]approx-2.3$, with little $rm [Fe/H]$ spread and some variation in $rm [alpha/Fe]$ abundances, which point to a common globular cluster progenitor. At a fixed location along the stream, the median radial velocity offset between the spur and the main stream is smaller than $0.5,rm km,s^{-1}$, comparable to the measurement uncertainty. A flyby of a massive, compact object can change orbits of stars in a stellar stream and produce features like the spur observed in GD-1. In this scenario, the radial velocity of the GD-1 spur relative to the stream constrains the orbit of the perturber and its current on-sky position to $approx5,000,rm deg^2$. The family of acceptable perturber orbits overlaps the stellar and dark-matter debris of the Sagittarius dwarf galaxy in present-day position and velocity. This suggests that GD-1 may have been perturbed by a globular cluster or an extremely compact dark-matter subhalo formerly associated with Sagittarius.
We measure chemical abundances for over 20 elements of 15 N-rich field stars with high resolution ($R sim 30000$) optical spectra. We find that Na, Mg, Al, Si, and Ca abundances of our N-rich field stars are mostly consistent with those of stars from globular clusters (GCs). Seven stars are estimated to have [Al/Fe$]>0.5$, which is not found in most GC first generation stars. On the other hand, $alpha$ element abundances (especially Ti) could show distinguishable differences between in situ stars and accreted stars. We discover that one interesting star, with consistently low [Mg/Fe], [Si/Fe], [Ca/Fe], [Ti/Fe], [Sc/Fe], [V/Fe], and [Co/Fe], show similar kinematic and [Ba/Eu] as other stars from the dissolved dwarf galaxy $Gaia$-Sausage-Enceladus. The $alpha$-element abundances and the iron-peak element abundances of the N-rich field stars with metallicities $-1.25 le {rm [Fe/H]} le -0.95$ show consistent values with Milky Way field stars rather than stars from dwarf galaxies, indicating that they were formed in situ. In addition, the neutron capture elements of N-rich field stars show that most of them could be enriched by asymptotic giant branch (AGB) stars with masses around $3 - 5, M_{odot}$.
The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) is an unbiased, massively multiplexed spectroscopic survey, designed to measure the expansion history of the universe through low-resolution ($Rsim750$) spectra of Lyman-Alpha Emitters. In it s search for these galaxies, HETDEX will also observe a few 10$^{5}$ stars. In this paper, we present the first stellar value-added catalog within the internal second data release of the HETDEX Survey (HDR2). The new catalog contains 120,571 low-resolution spectra for 98,736 unique stars between $10 < G < 22$ spread across the HETDEX footprint at relatively high ($bsim60^circ$) Galactic latitudes. With these spectra, we measure radial velocities (RVs) for $sim$42,000 unique FGK-type stars in the catalog and show that the HETDEX spectra are sufficient to constrain these RVs with a 1$sigma$ precision of 28.0 km/s and bias of 3.5 km/s with respect to the LAMOST surveys and 1$sigma$ precision of 27.5 km/s and bias of 14.0 km/s compared to the SEGUE survey. Since these RVs are for faint ($Ggeq16$) stars, they will be complementary to Gaia. Using t-Distributed Stochastic Neighbor Embedding (t-SNE), we also demonstrate that the HETDEX spectra can be used to determine a stars T${rm{eff}}$, and log g and its [Fe/H]. With the t-SNE projection of the FGK-type stars with HETDEX spectra we also identify 416 new candidate metal-poor ([Fe/H] $< -1$~dex) stars for future study. These encouraging results illustrate the utility of future low-resolution stellar spectroscopic surveys.
To reveal the origins of diffuse H-alpha emissions observed around the Herbig star MWC 1080, we have performed a high-resolution near-infrared (NIR) spectroscopic observation using the Immersion GRating INfrared Spectrograph (IGRINS). In the NIR H an d K bands, we detected various emission lines (six hydrogen Brackett lines, seven H2 lines, and an [Fe II] line) and compared their spatial locations with the optical (H-alpha and [S II]) and radio (13CO and CS) line maps. The shock-induced H2 and [Fe II] lines indicate the presence of multiple outflows, consisting of at least three, associated young stars in this region. The kinematics of H2 and [Fe II] near the northeast (NE) cavity edge supports that the NE main outflow from MWC 1080A is the blueshifted one with a low inclination angle. The H2 and [Fe II] lines near the southeast molecular region newly reveal that additional highly-blueshifted outflows originate from other young stars. The fluorescent H2 lines were found to trace photodissociation regions formed on the cylindrical surfaces of the main outflow cavity, which are expanding outward with a velocity of about 10-15 km/s. For the H-alpha emission, we identify its components associated with two stellar outflows and two young stars in addition to the dominant component of MWC 1080A scattered by dust. We also report a few faint H-alpha features located ~0.4 pc away in the southwest direction from MWC 1080A, which lie near the axes of the NE main outflow and one of the newly-identified outflows.
Here we analyze high-resolution spectra of the Nova V392 Per obtained during the 2018 outburst. The H$alpha$ and H$beta$ emission lines show a triple-peak structure with radial velocities of about -2000 km/s, -250 km/s and 1900 km/s respectively. The near infrared spectrum is dominated by the narrow and single-peaked Paschen lines of hydrogen and the OI $lambda$8446 and OI $lambda$7773 emission lines. Using DIBs and the KI line, we estimate the interstellar excess towards V392 Per. Based on AAVSO and ASAS-SN photometry data, we calculate that the t$_2$ and t$_3$ decline times are $sim$ 3 d and $sim$ 11 d respectively, which classifies V392 Per as a very fast nova. We also briefly discuss the similarity between V392 Per and other very fast novae and the possible future evolution of the system in terms of the hibernation model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا