ترغب بنشر مسار تعليمي؟ اضغط هنا

AutoKWS: Keyword Spotting with Differentiable Architecture Search

115   0   0.0 ( 0 )
 نشر من قبل Bo Zhang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Smart audio devices are gated by an always-on lightweight keyword spotting program to reduce power consumption. It is however challenging to design models that have both high accuracy and low latency for accurate and fast responsiveness. Many efforts have been made to develop end-to-end neural networks, in which depthwise separable convolutions, temporal convolutions, and LSTMs are adopted as building units. Nonetheless, these networks designed with human expertise may not achieve an optimal trade-off in an expansive search space. In this paper, we propose to leverage recent advances in differentiable neural architecture search to discover more efficient networks. Our searched model attains 97.2% top-1 accuracy on Google Speech Command Dataset v1 with only nearly 100K parameters.



قيم البحث

اقرأ أيضاً

The goal of this work is to train effective representations for keyword spotting via metric learning. Most existing works address keyword spotting as a closed-set classification problem, where both target and non-target keywords are predefined. There fore, prevailing classifier-based keyword spotting systems perform poorly on non-target sounds which are unseen during the training stage, causing high false alarm rates in real-world scenarios. In reality, keyword spotting is a detection problem where predefined target keywords are detected from a variety of unknown sounds. This shares many similarities to metric learning problems in that the unseen and unknown non-target sounds must be clearly differentiated from the target keywords. However, a key difference is that the target keywords are known and predefined. To this end, we propose a new method based on metric learning that maximises the distance between target and non-target keywords, but also learns per-class weights for target keywords `a la classification objectives. Experiments on the Google Speech Commands dataset show that our method significantly reduces false alarms to unseen non-target keywords, while maintaining the overall classification accuracy.
Deep neural networks provide effective solutions to small-footprint keyword spotting (KWS). However, if training data is limited, it remains challenging to achieve robust and highly accurate KWS in real-world scenarios where unseen sounds that are ou t of the training data are frequently encountered. Most conventional methods aim to maximize the classification accuracy on the training set, without taking the unseen sounds into account. To enhance the robustness of the deep neural networks based KWS, in this paper, we introduce a new loss function, named the maximization of the area under the receiver-operating-characteristic curve (AUC). The proposed method not only maximizes the classification accuracy of keywords on the closed training set, but also maximizes the AUC score for optimizing the performance of non-keyword segments detection. Experimental results on the Google Speech Commands dataset v1 and v2 show that our method achieves new state-of-the-art performance in terms of most evaluation metrics.
Keyword spotting--or wakeword detection--is an essential feature for hands-free operation of modern voice-controlled devices. With such devices becoming ubiquitous, users might want to choose a personalized custom wakeword. In this work, we present D ONUT, a CTC-based algorithm for online query-by-example keyword spotting that enables custom wakeword detection. The algorithm works by recording a small number of training examples from the user, generating a set of label sequence hypotheses from these training examples, and detecting the wakeword by aggregating the scores of all the hypotheses given a new audio recording. Our method combines the generalization and interpretability of CTC-based keyword spotting with the user-adaptation and convenience of a conventional query-by-example system. DONUT has low computational requirements and is well-suited for both learning and inference on embedded systems without requiring private user data to be uploaded to the cloud.
Models based on attention mechanisms have shown unprecedented speech recognition performance. However, they are computationally expensive and unnecessarily complex for keyword spotting, a task targeted to small-footprint devices. This work explores t he application of Lambda networks, an alternative framework for capturing long-range interactions without attention, for the keyword spotting task. We propose a novel textit{ResNet}-based model by swapping the residual blocks by temporal Lambda layers. Furthermore, the proposed architecture is built upon uni-dimensional temporal convolutions that further reduce its complexity. The presented model does not only reach state-of-the-art accuracies on the Google Speech Commands dataset, but it is 85% and 65% lighter than its Transformer-based (KWT) and convolutional (Res15) counterparts while being up to 100 times faster. To the best of our knowledge, this is the first attempt to explore the Lambda framework within the speech domain and therefore, we unravel further research of new interfaces based on this architecture.
End-to-end approaches to anti-spoofing, especially those which operate directly upon the raw signal, are starting to be competitive with their more traditional counterparts. Until recently, all such approaches consider only the learning of network pa rameters; the network architecture is still hand crafted. This too, however, can also be learned. Described in this paper is our attempt to learn automatically the network architecture of a speech deepfake and spoofing detection solution, while jointly optimising other network components and parameters, such as the first convolutional layer which operates on raw signal inputs. The resulting raw differentiable architecture search system delivers a tandem detection cost function score of 0.0517 for the ASVspoof 2019 logical access database, a result which is among the best single-system results reported to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا