ﻻ يوجد ملخص باللغة العربية
We study the effect of an applied magnetic field on the nonequilibrium transport properties of a general cubic quantum network described by a tight-binding Hamiltonian with specially designed couplings to the leads that preserve open-system symmetries. We demonstrate that the symmetry of open systems can be manipulated by the direction of the magnetic field. Starting with all the symmetries preserved in absence of a field, the anisotropic and isotropic fields systematically break the symmetries, influencing all nonequilibrium properties. For simple cubic systems, we are able to identify the steady states that comprise of pure states, bath-dependent states (nonequilibrium steady states), and also nonphysical states. As an application, we show numerically for large cubic networks that the symmetry breaking can control nonequilibrium currents and that different environmental interactions can lead to novel features which can be engineered in artificial super-lattices and cold atoms.
In this work we analyze the simultaneous emergence of diffusive energy transport and local thermalization in a nonequilibrium one-dimensional quantum system, as a result of integrability breaking. Specifically, we discuss the local properties of the
In this article we derive expressions for Casimir-like pressures induced by nonequilibrium concentration fluctuations in liquid mixtures. The results are then applied to liquid mixtures in which the concentration gradient results from a temperature g
Long-range thermal fluctuations appear in fluids in nonequilibrium states leading to fluctuation-induced Casimir-like forces. Two distinct mechanisms have been identified for the origin of the long-range nonequilibrium fluctuations in fluids subjecte
We study parametrically driven quantum oscillators and show that, even for weak coupling between the oscillators, they can exhibit various many-body states with broken time-translation symmetry. In the quantum-coherent regime, the symmetry breaking o
Time-reversal symmetry of most conservative forces constrains the properties of linear transport in most physical systems. Here, I study the efficiency of energy transfer in oscillator networks where time-reversal symmetry is broken locally by Lorent