ﻻ يوجد ملخص باللغة العربية
We study a renormalization group (RG) map for tensor networks that include two-dimensional lattice spin systems such as the Ising model. Numerical studies of such RG maps have been quite successful at reproducing the known critical behavior. In those numerical studies the RG map must be truncated to keep the dimension of the legs of the tensors bounded. Our tensors act on an infinite-dimensional Hilbert space, and our RG map does not involve any truncations. Our RG map has a trivial fixed point which represents the high-temperature fixed point. We prove that if we start with a tensor that is close to this fixed point tensor, then the iterates of the RG map converge in the Hilbert-Schmidt norm to the fixed point tensor. It is important to emphasize that this statement is not true for the simplest tensor network RG map in which one simply contracts four copies of the tensor to define the renormalized tensor. The linearization of this simple RG map about the fixed point is not a contraction due to the presence of so-called CDL tensors. Our work provides a first step towards the important problem of the rigorous study of RG maps for tensor networks in a neighborhood of the critical point.
We discuss the decay of unstable states into a quasicontinuum using models of the effective Hamiltonian type. The goal is to show that exponential decay and the golden rule are exact in a suitable scaling limit, and that there is an associated renorm
In search of non-trivial field theories in high dimensions, we study further the tensor representation of the $O(N)$-symmetric $phi^4$ field theory introduced by Herbut and Janssen (Phys. Rev. D. 93, 085005 (2016)), by using four-loop perturbation th
We introduce a systematic mathematical language for describing fixed point models and apply it to the study to topological phases of matter. The framework established is reminiscent to that of state-sum models and lattice topological quantum field th
The electrocaloric effect (ECE), i.e., the reversible temperature change due to the adiabatic variation of the electric field, is of great interest due to its potential technological applications. Based on entropy arguments, we present a new framewor
We consider $N$ particles in the plane influenced by a general external potential that are subject to the Coulomb interaction in two dimensions at inverse temperature $beta$. At large temperature, when scaling $beta=2c/N$ with some fixed constant $c>