ترغب بنشر مسار تعليمي؟ اضغط هنا

The high temperature crossover for general 2D Coulomb gases

147   0   0.0 ( 0 )
 نشر من قبل Sung-Soo Byun
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider $N$ particles in the plane influenced by a general external potential that are subject to the Coulomb interaction in two dimensions at inverse temperature $beta$. At large temperature, when scaling $beta=2c/N$ with some fixed constant $c>0$, in the large-$N$ limit we observe a crossover from Ginibres circular law or its generalization to the density of non-interacting particles at $beta=0$. Using several different methods we derive a partial differential equation of generalized Liouville type for the crossover density. For radially symmetric potentials we present some asymptotic results and give examples for the numerical solution of the crossover density. These findings generalise previous results when the interacting particles are confined to the real line. In that situation we derive an integral equation for the resolvent valid for a general potential and present the analytic solution for the density in case of a Gaussian plus logarithmic potential.

قيم البحث

اقرأ أيضاً

188 - John Z. Imbrie 2003
This article will review recent results on dimensional reduction for branched polymers, and discuss implications for critical phenomena. Parisi and Sourlas argued in 1981 that branched polymers fall into the universality class of the Yang-Lee edge in two fewer dimensions. Brydges and I have proven in [math-ph/0107005] that the generating function for self-avoiding branched polymers in D+2 continuum dimensions is proportional to the pressure of the hard-core continuum gas at negative activity in D dimensions (which is in the Yang-Lee or $i phi^3$ class). I will describe how this equivalence arises from an underlying supersymmetry of the branched polymer model. - I will also use dimensional reduction to analyze the crossover of two-dimensional branched polymers to their mean-field limit, and to show that the scaling is given by an Airy function (the same as in [cond-mat/0107223]).
Using a specially tuned mean-field Bose gas as a reference system, we establish a positive lower bound on the condensate density for continuous Bose systems with superstable two-body interactions and a finite gap in the one-particle excitations spect rum, i.e. we prove for the first time standard homogeneous Bose-Einstein condensation for such interacting systems.
We study a renormalization group (RG) map for tensor networks that include two-dimensional lattice spin systems such as the Ising model. Numerical studies of such RG maps have been quite successful at reproducing the known critical behavior. In those numerical studies the RG map must be truncated to keep the dimension of the legs of the tensors bounded. Our tensors act on an infinite-dimensional Hilbert space, and our RG map does not involve any truncations. Our RG map has a trivial fixed point which represents the high-temperature fixed point. We prove that if we start with a tensor that is close to this fixed point tensor, then the iterates of the RG map converge in the Hilbert-Schmidt norm to the fixed point tensor. It is important to emphasize that this statement is not true for the simplest tensor network RG map in which one simply contracts four copies of the tensor to define the renormalized tensor. The linearization of this simple RG map about the fixed point is not a contraction due to the presence of so-called CDL tensors. Our work provides a first step towards the important problem of the rigorous study of RG maps for tensor networks in a neighborhood of the critical point.
We study a log-gas on a network (a finite, simple graph) confined in a bounded subset of a local field (i.e. R, C, Q_{p} the field of p-adic numbers). In this gas, a log-Coulomb interaction between two charged particles occurs only when the sites of the particles are connected by an edge of the network. The partition functions of such gases turn out to be a particular class of multivariate local zeta functions attached to the network and a positive test function which is determined by the confining potential. The methods and results of the theory of local zeta functions allow us to establish that the partition functions admit meromorphic continuations in the parameter b{eta} (the inverse of the absolute temperature). We give conditions on the charge distributions and the confining potential such that the meromorphic continuations of the partition functions have a pole at a positive value b{eta}_{UV}, which implies the existence of phase transitions at finite temperature. In the case of p-adic fields the meromorphic continuations of the partition functions are rational functions in the variable p^{-b{eta}}. We give an algorithm for computing such rational functions. For this reason, we can consider the p-adic log-Coulomb gases as exact solvable models. We expect that all these models for different local fields share common properties, and that they can be described by a uniform theory.
It is proven that the ground state is unique in the Edwards-Anderson model for almost all continuous random exchange interactions, and any excited state with the overlap less than its maximal value has large energy in dimensions higher than two with probability one. Since the spin overlap is shown to be concentrated at its maximal value in the ground state, replica symmetry breaking does not occur in the Edwards-Anderson model near zero temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا