ﻻ يوجد ملخص باللغة العربية
In search of non-trivial field theories in high dimensions, we study further the tensor representation of the $O(N)$-symmetric $phi^4$ field theory introduced by Herbut and Janssen (Phys. Rev. D. 93, 085005 (2016)), by using four-loop perturbation theory in two cubic interaction coupling constants near six dimensions. For infinitesimal values of the parameter $epsilon=(6-d)/2$ we find infrared-stable fixed point with two relevant quadratic operators for $N$ within the conformal windows $1<N<2.653$ and $2.999<N<4$, and compute critical exponents at this fixed point to the order $epsilon^4$. Taking the four-loop beta-functions at their face value we determine the higher-order corrections to the edges of the above conformal windows at finite $epsilon$, to find both intervals to shrink to zero above $epsilonapprox 0.15$. The disappearance of the conformal windows with the increase of $epsilon$ is due to the collision of the Wilson-Fisher $mathcal{O}(epsilon)$ infrared fixed point with the $mathcal{O}(1)$ mixed-stable fixed point that appears at two and persists at higher loops. The latter may be understood as a Banks-Zaks type fixed point that becomes weakly coupled near the right edge of either conformal window. The consequences and issues raised by such an evolution of the flow with dimension are discussed. It is also shown both within the perturbation theory and exactly that the tensor representation at $N=3$ and right at the $mathcal{O}(epsilon)$ infrared-stable fixed point exhibits an emergent $U(3)$ symmetry. A role of this enlarged symmetry in possible protection of the infrared fixed point at $N=3$ is noted.
A tensorial representation of $phi^4$ field theory introduced in Phys. Rev. D. 93, 085005 (2016) is studied close to six dimensions, with an eye towards a possible realization of an interacting conformal field theory in five dimensions. We employ the
We use numerical bootstrap techniques to study correlation functions of a traceless symmetric tensors of $O(N)$ with two indexes $t_{ij}$. We obtain upper bounds on operator dimensions for all the relevant representations and several values of $N$. W
Motivated by applications to critical phenomena and open theoretical questions, we study conformal field theories with $O(m)times O(n)$ global symmetry in $d=3$ spacetime dimensions. We use both analytic and numerical bootstrap techniques. Using the
We apply the methods of modern analytic bootstrap to the critical $O(N)$ model in a $1/N$ expansion. At infinite $N$ the model possesses higher spin symmetry which is weakly broken as we turn on $1/N$. By studying consistency conditions for the corre
We develop new tools for isolating CFTs using the numerical bootstrap. A cutting surface algorithm for scanning OPE coefficients makes it possible to find islands in high-dimensional spaces. Together with recent progress in large-scale semidefinite p