ﻻ يوجد ملخص باللغة العربية
For a wider adoption of electromobility, the market calls for fast-charging, safe, long-lasting batteries with sufficient performance. This drives the exploration of new energy storage materials, and also promotes fundamental investigations of materials already widely used. At the moment, renewed interest in anode materials is observed -- with a particular focus on graphite electrodes for lithium-ion batteries. Here, we focus on the upper limit of lithium intercalation in the morphologically quasi-ideal Highly Oriented Pyrolytic Graphite (HOPG). The state and long-term stability of a sample prepared by immersion of an HOPG crystal in liquid lithium metal at ambient pressure is investigated by static $^7$Li nuclear magnetic resonance (NMR). We resolved signatures of superdense intercalation compounds, LiC$_{6-x}$ with $x>0$, which are monitored upon calendaric ageing. {em Ab initio} thermodynamics and {em ab initio} molecular dynamics reveal the relative stabilities and kinetics of different superdense configurations, providing leads for the interpretation of the NMR results. Including these superdense structures in the conceptual design of high-energy, fast-charge electrodes might provide further insights on the failure mechanisms and performance of Li-ion batteries.
X-ray amorphous manganese oxides were prepared by reduction of sodium permanganate by lithium iodide in aqueous medium (MnOx-I) and by decomposition of manganese carbonate at moderate temperature (MnOx-C). TEM showed that these materials are not amor
The essential properties of graphite-based 3D systems are thoroughly investigated by the first-principles method. Such materials cover a simple hexagonal graphite, a Bernal graphite, and the stage-1 to stage-4 Li/Li$^+$ graphite intercalation compoun
Electrons in isolated graphene layers are a two-dimensional gas of massless Dirac Fermions. In realistic devices, however, the electronic properties are modified by elastic deformations, interlayer coupling and substrate interaction. Here we unravel
In this work, we use the liquid ammonia method to successfully intercalate potassium atoms into ZrTe5 single crystal, and find a transition from semimetal to semiconductor at low temperature in the intercalated ZrTe5. The resistance anomalous peak is
Modeling layered intercalation compounds from first principles poses a problem, as many of their properties are determined by a subtle balance between van der Waals interactions and chemical or Madelung terms, and a good description of van der Waals