ﻻ يوجد ملخص باللغة العربية
X-ray amorphous manganese oxides were prepared by reduction of sodium permanganate by lithium iodide in aqueous medium (MnOx-I) and by decomposition of manganese carbonate at moderate temperature (MnOx-C). TEM showed that these materials are not amorphous, but nanostructured, with a prominent spinel substructure in MnOx-C. These materials intercalate lithium with capacities up to 200 mAh/g at first cycle (potential window 1.8-4.3 V) and 175 mAh/g at 100th cycle. Best performances for MnOx-C are obtained with cobalt doping. Potential electrochemical spectroscopy shows that the initial discharge induces a 2-phase transformation in MnOx-C phases, but not in MnOx-I ones. EXAFS and XANES confirm the participation of manganese in the redox process, with variations in local structure much smaller than in known long-range crystallized manganese oxides. X-ray absorption spectroscopy also shows that cobalt in MnOx-C is divalent and does not participate in the electrochemical reaction.
Oxygen was electrochemically intercalated into Sr$_2$IrO$_4$ sintered samples, single crystals and a thin film. We estimate the diffusion length to a few $mu$m and the concentration of the intercalated oxygen to $delta$ $simeq$ 0.01. The latter is th
The electronic structure is found to be understandable in terms of free-atom term values and universal interorbital coupling parameters, since self-consistent tight-binding calculations indicate that Coulomb shifts of the d-state energies are small.
We demonstrate how machine-learning based interatomic potentials can be used to model guest atoms in host structures. Specifically, we generate Gaussian approximation potential (GAP) models for the interaction of lithium atoms with graphene, graphite
Lithium-intercalated layered transition-metal oxides, LixTMO2, brought about a paradigm change in rechargeable batteries in recent decades and show promise for use in memristors, a type of device for future neural computing and on-chip storage. Therm
Field-induced magnetization jumps with similar characteristics are observed at low temperature for the intermetallic germanide Gd5Ge4and the mixed-valent manganite Pr0.6Ca0.4Mn0.96Ga0.04O3. We report that the field location -and even the existence- o