ﻻ يوجد ملخص باللغة العربية
Electrons in isolated graphene layers are a two-dimensional gas of massless Dirac Fermions. In realistic devices, however, the electronic properties are modified by elastic deformations, interlayer coupling and substrate interaction. Here we unravel the electronic structure of doped graphene, revisiting the stage one graphite intercalation compound KC$_8$ using angle--resolved photoemission spectroscopy and ab--initio calculations. The full experimental dispersion is in excellent agreement to calculations of doped graphene once electron correlations are included on the $GW$ level. This highlights that KC$_8$ has negligible interlayer coupling. Therefore Dirac Fermion behaviour is preserved and we directly determine the full experimental Dirac cone of doped graphene. In addition we prove that superconductivity in KC$_8$ is mediated by electron--phonon coupling to an iTO phonon, yielding a strong kink in the quasiparticle dispersion at 166 meV. These results are key for understanding, both, the unique electronic properties of graphene and superconductivity in KC$_8$.
We have performed photoemission studies of the electronic structure in LiC$_6$ and KC$_8$, a non-superconducting and a superconducting graphite intercalation compound, respectively. We have found that the charge transfer from the intercalant layers t
The essential properties of graphite-based 3D systems are thoroughly investigated by the first-principles method. Such materials cover a simple hexagonal graphite, a Bernal graphite, and the stage-1 to stage-4 Li/Li$^+$ graphite intercalation compoun
Modeling layered intercalation compounds from first principles poses a problem, as many of their properties are determined by a subtle balance between van der Waals interactions and chemical or Madelung terms, and a good description of van der Waals
For a wider adoption of electromobility, the market calls for fast-charging, safe, long-lasting batteries with sufficient performance. This drives the exploration of new energy storage materials, and also promotes fundamental investigations of materi
The calculated results of FeCl3 graphite intercalation compounds show the detailed features. The stage-1 FeCl3-graphite intercalation compounds present diversified electronic properties due to the intercalant. The first-principles calculations on VAS