ترغب بنشر مسار تعليمي؟ اضغط هنا

The Equidistant Dimension of Graphs

89   0   0.0 ( 0 )
 نشر من قبل Antonio Gonz\\'alez
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A subset $S$ of vertices of a connected graph $G$ is a distance-equalizer set if for every two distinct vertices $x, y in V (G) setminus S$ there is a vertex $w in S$ such that the distances from $x$ and $y$ to $w$ are the same. The equidistant dimension of $G$ is the minimum cardinality of a distance-equalizer set of G. This paper is devoted to introduce this parameter and explore its properties and applications to other mathematical problems, not necessarily in the context of graph theory. Concretely, we first establish some bounds concerning the order, the maximum degree, the clique number, and the independence number, and characterize all graphs attaining some extremal values. We then study the equidistant dimension of several families of graphs (complete and complete multipartite graphs, bistars, paths, cycles, and Johnson graphs), proving that, in the case of paths and cycles, this parameter is related with 3-AP-free sets. Subsequently, we show the usefulness of distance-equalizer sets for constructing doubly resolving sets.



قيم البحث

اقرأ أيضاً

For an ordered subset $S = {s_1, s_2,dots s_k}$ of vertices and a vertex $u$ in a connected graph $G$, the metric representation of $u$ with respect to $S$ is the ordered $k$-tuple $ r(u|S)=(d_G(v,s_1), d_G(v,s_2),dots,$ $d_G(v,s_k))$, where $d_G(x,y )$ represents the distance between the vertices $x$ and $y$. The set $S$ is a metric generator for $G$ if every two different vertices of $G$ have distinct metric representations. A minimum metric generator is called a metric basis for $G$ and its cardinality, $dim(G)$, the metric dimension of $G$. It is well known that the problem of finding the metric dimension of a graph is NP-Hard. In this paper we obtain closed formulae and tight bounds for the metric dimension of strong product graphs.
It has been known for more than 40 years that there are posets with planar cover graphs and arbitrarily large dimension. Recently, Streib and Trotter proved that such posets must have large height. In fact, all known constructions of such posets have two large disjoint chains with all points in one chain incomparable with all points in the other. Gutowski and Krawczyk conjectured that this feature is necessary. More formally, they conjectured that for every $kgeq 1$, there is a constant $d$ such that if $P$ is a poset with a planar cover graph and $P$ excludes $mathbf{k}+mathbf{k}$, then $dim(P)leq d$. We settle their conjecture in the affirmative. We also discuss possibilities of generalizing the result by relaxing the condition that the cover graph is planar.
Dimension is a standard and well-studied measure of complexity of posets. Recent research has provided many new upper bounds on the dimension for various structurally restricted classes of posets. Bounded dimension gives a succinct representation of the poset, admitting constant response time for queries of the form is $x<y$?. This application motivates looking for stronger notions of dimension, possibly leading to succinct representations for more general classes of posets. We focus on two: boolean dimension, introduced in the 1980s and revisited in recent research, and local dimension, a very new one. We determine precisely which values of dimension/boolean dimension/local dimension imply that the two other parameters are bounded.
The asymptotic dimension is an invariant of metric spaces introduced by Gromov in the context of geometric group theory. In this paper, we study the asymptotic dimension of metric spaces generated by graphs and their shortest path metric and show the ir applications to some continuous spaces. The asymptotic dimension of such graph metrics can be seen as a large scale generalisation of weak diameter network decomposition which has been extensively studied in computer science. We prove that every proper minor-closed family of graphs has asymptotic dimension at most 2, which gives optimal answers to a question of Fujiwara and Papasoglu and (in a strong form) to a problem raised by Ostrovskii and Rosenthal on minor excluded groups. For some special minor-closed families, such as the class of graphs embeddable in a surface of bounded Euler genus, we prove a stronger result and apply this to show that complete Riemannian surfaces have Assouad-Nagata dimension at most 2. Furthermore, our techniques allow us to prove optimal results for the asymptotic dimension of graphs of bounded layered treewidth and graphs of polynomial growth, which are graph classes that are defined by purely combinatorial notions and properly contain graph classes with some natural topological and geometric flavours.
164 - F.V.Petrov , A.M.Vershik 2009
We give new examples and describe the complete lists of all measures on the set of countable homogeneous universal graphs and $K_s$-free homogeneous universal graphs (for $sgeq 3$) that are invariant with respect to the group of all permutations of t he vertices. Such measures can be regarded as random graphs (respectively, random $K_s$-free graphs). The well-known example of Erdos--Renyi (ER) of the random graph corresponds to the Bernoulli measure on the set of adjacency matrices. For the case of the universal $K_s$-free graphs there were no previously known examples of the invariant measures on the space of such graphs. The main idea of our construction is based on the new notions of {it measurable universal}, and {it topologically universal} graphs, which are interesting themselves. The realization of the construction can be regarded as two-step randomization for universal measurable graph : {it randomization in vertices} and {it randomization in edges}. For $K_s$-free, $sgeq 3$ there is only randomization in vertices of the measurable graphs. The completeness of our lists is proved using the important theorem by D. Aldous about $S_{infty}$-invariant matrices, which we reformulate in appropriate way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا