ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic Dimension of Minor-Closed Families and Assouad-Nagata Dimension of Surfaces

101   0   0.0 ( 0 )
 نشر من قبل Chun-Hung Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The asymptotic dimension is an invariant of metric spaces introduced by Gromov in the context of geometric group theory. In this paper, we study the asymptotic dimension of metric spaces generated by graphs and their shortest path metric and show their applications to some continuous spaces. The asymptotic dimension of such graph metrics can be seen as a large scale generalisation of weak diameter network decomposition which has been extensively studied in computer science. We prove that every proper minor-closed family of graphs has asymptotic dimension at most 2, which gives optimal answers to a question of Fujiwara and Papasoglu and (in a strong form) to a problem raised by Ostrovskii and Rosenthal on minor excluded groups. For some special minor-closed families, such as the class of graphs embeddable in a surface of bounded Euler genus, we prove a stronger result and apply this to show that complete Riemannian surfaces have Assouad-Nagata dimension at most 2. Furthermore, our techniques allow us to prove optimal results for the asymptotic dimension of graphs of bounded layered treewidth and graphs of polynomial growth, which are graph classes that are defined by purely combinatorial notions and properly contain graph classes with some natural topological and geometric flavours.

قيم البحث

اقرأ أيضاً

The asymptotic dimension is an invariant of metric spaces introduced by Gromov in the context of geometric group theory. When restricted to graphs and their shortest paths metric, the asymptotic dimension can be seen as a large scale version of weak diameter colorings (also known as weak diameter network decompositions), i.e. colorings in which each monochromatic component has small weak diameter. In this paper, we prove that for any $p$, the class of graphs excluding $K_{3,p}$ as a minor has asymptotic dimension at most 2. This implies that the class of all graphs embeddable on any fixed surface (and in particular the class of planar graphs) has asymptotic dimension 2, which gives a positive answer to a recent question of Fujiwara and Papasoglu. Our result extends from graphs to Riemannian surfaces. We also prove that graphs of bounded pathwidth have asymptotic dimension at most 1 and graphs of bounded layered pathwidth have asymptotic dimension at most 2. We give some applications of our techniques to graph classes defined in a topological or geometrical way, and to graph classes of polynomial growth. Finally we prove that the class of bounded degree graphs from any fixed proper minor-closed class has asymptotic dimension at most 2. This can be seen as a large scale generalization of the result that bounded degree graphs from any fixed proper minor-closed class are 3-colorable with monochromatic components of bounded size. This also implies that (infinite) Cayley graphs avoiding some minor have asymptotic dimension at most 2, which solves a problem raised by Ostrovskii and Rosenthal.
Dimension is a standard and well-studied measure of complexity of posets. Recent research has provided many new upper bounds on the dimension for various structurally restricted classes of posets. Bounded dimension gives a succinct representation of the poset, admitting constant response time for queries of the form is $x<y$?. This application motivates looking for stronger notions of dimension, possibly leading to succinct representations for more general classes of posets. We focus on two: boolean dimension, introduced in the 1980s and revisited in recent research, and local dimension, a very new one. We determine precisely which values of dimension/boolean dimension/local dimension imply that the two other parameters are bounded.
We study covering numbers and local covering numbers with respect to difference graphs and complete bipartite graphs. In particular we show that in every cover of a Young diagram with $binom{2k}{k}$ steps with generalized rectangles there is a row or a column in the diagram that is used by at least $k+1$ rectangles, and prove that this is best-possible. This answers two questions by Kim, Martin, Masa{v{r}}{i}k, Shull, Smith, Uzzell, and Wang (Europ. J. Comb. 2020), namely: - What is the local complete bipartite cover number of a difference graph? - Is there a sequence of graphs with constant local difference graph cover number and unbounded local complete bipartite cover number? We add to the study of these local covering numbers with a lower bound construction and some examples. Following Kim emph{et al.}, we use the results on local covering numbers to provide lower and upper bounds for the local dimension of partially ordered sets of height~2. We discuss the local dimension of some posets related to Boolean lattices and show that the poset induced by the first two layers of the Boolean lattice has local dimension $(1 + o(1))log_2log_2 n$. We conclude with some remarks on covering numbers for digraphs and Ferrers dimension.
It has been known for more than 40 years that there are posets with planar cover graphs and arbitrarily large dimension. Recently, Streib and Trotter proved that such posets must have large height. In fact, all known constructions of such posets have two large disjoint chains with all points in one chain incomparable with all points in the other. Gutowski and Krawczyk conjectured that this feature is necessary. More formally, they conjectured that for every $kgeq 1$, there is a constant $d$ such that if $P$ is a poset with a planar cover graph and $P$ excludes $mathbf{k}+mathbf{k}$, then $dim(P)leq d$. We settle their conjecture in the affirmative. We also discuss possibilities of generalizing the result by relaxing the condition that the cover graph is planar.
79 - Benjamin R. Jones 2021
Binary functions are a generalisation of the cocircuit spaces of binary matroids to arbitrary functions. Every rank function is assigned a binary function, and the deletion and contraction operations of binary functions generalise matroid deletion an d contraction. We give the excluded minor characterisations for the classes of binary functions with well defined minors, and those with an associated rank function. Within these classes, we also characterise the classes of binary functions corresponding to polymatroids, matroids and binary matroids by their excluded minors. This gives a new proof of Tuttes excluded minor characterisation of binary matroids in the more generalised space of binary functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا