ترغب بنشر مسار تعليمي؟ اضغط هنا

$beta$-Annealed Variational Autoencoder for glitches

67   0   0.0 ( 0 )
 نشر من قبل Sivaramakrishnan Sankarapandian
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitational wave detectors such as LIGO and Virgo are susceptible to various types of instrumental and environmental disturbances known as glitches which can mask and mimic gravitational waves. While there are 22 classes of non-Gaussian noise gradients currently identified, the number of classes is likely to increase as these detectors go through commissioning between observation runs. Since identification and labelling new noise gradients can be arduous and time-consuming, we propose $beta$-Annelead VAEs to learn representations from spectograms in an unsupervised way. Using the same formulation as cite{alemi2017fixing}, we view Bottleneck-VAEs~cite{burgess2018understanding} through the lens of information theory and connect them to $beta$-VAEs~cite{higgins2017beta}. Motivated by this connection, we propose an annealing schedule for the hyperparameter $beta$ in $beta$-VAEs which has advantages of: 1) One fewer hyperparameter to tune, 2) Better reconstruction quality, while producing similar levels of disentanglement.

قيم البحث

اقرأ أيضاً

This paper proposes Dirichlet Variational Autoencoder (DirVAE) using a Dirichlet prior for a continuous latent variable that exhibits the characteristic of the categorical probabilities. To infer the parameters of DirVAE, we utilize the stochastic gr adient method by approximating the Gamma distribution, which is a component of the Dirichlet distribution, with the inverse Gamma CDF approximation. Additionally, we reshape the component collapsing issue by investigating two problem sources, which are decoder weight collapsing and latent value collapsing, and we show that DirVAE has no component collapsing; while Gaussian VAE exhibits the decoder weight collapsing and Stick-Breaking VAE shows the latent value collapsing. The experimental results show that 1) DirVAE models the latent representation result with the best log-likelihood compared to the baselines; and 2) DirVAE produces more interpretable latent values with no collapsing issues which the baseline models suffer from. Also, we show that the learned latent representation from the DirVAE achieves the best classification accuracy in the semi-supervised and the supervised classification tasks on MNIST, OMNIGLOT, and SVHN compared to the baseline VAEs. Finally, we demonstrated that the DirVAE augmented topic models show better performances in most cases.
Particle based optimization algorithms have recently been developed as sampling methods that iteratively update a set of particles to approximate a target distribution. In particular Stein variational gradient descent has gained attention in the appr oximate inference literature for its flexibility and accuracy. We empirically explore the ability of this method to sample from multi-modal distributions and focus on two important issues: (i) the inability of the particles to escape from local modes and (ii) the inefficacy in reproducing the density of the different regions. We propose an annealing schedule to solve these issues and show, through various experiments, how this simple solution leads to significant improvements in mode coverage, without invalidating any theoretical properties of the original algorithm.
Variational autoencoder (VAE) is a widely used generative model for learning latent representations. Burda et al. in their seminal paper showed that learning capacity of VAE is limited by over-pruning. It is a phenomenon where a significant number of latent variables fail to capture any information about the input data and the corresponding hidden units become inactive. This adversely affects learning diverse and interpretable latent representations. As variational graph autoencoder (VGAE) extends VAE for graph-structured data, it inherits the over-pruning problem. In this paper, we adopt a model based approach and propose epitomic VGAE (EVGAE),a generative variational framework for graph datasets which successfully mitigates the over-pruning problem and also boosts the generative ability of VGAE. We consider EVGAE to consist of multiple sparse VGAE models, called epitomes, that are groups of latent variables sharing the latent space. This approach aids in increasing active units as epitomes compete to learn better representation of the graph data. We verify our claims via experiments on three benchmark datasets. Our experiments show that EVGAE has a better generative ability than VGAE. Moreover, EVGAE outperforms VGAE on link prediction task in citation networks.
A new form of variational autoencoder (VAE) is developed, in which the joint distribution of data and codes is considered in two (symmetric) forms: ($i$) from observed data fed through the encoder to yield codes, and ($ii$) from latent codes drawn fr om a simple prior and propagated through the decoder to manifest data. Lower bounds are learned for marginal log-likelihood fits observed data and latent codes. When learning with the variational bound, one seeks to minimize the symmetric Kullback-Leibler divergence of joint density functions from ($i$) and ($ii$), while simultaneously seeking to maximize the two marginal log-likelihoods. To facilitate learning, a new form of adversarial training is developed. An extensive set of experiments is performed, in which we demonstrate state-of-the-art data reconstruction and generation on several image benchmark datasets.
101 - Jia Li , Tomasyu Yu , Jiajin Li 2020
Graph Neural Networks (GNNs) and Variational Autoencoders (VAEs) have been widely used in modeling and generating graphs with latent factors. However, there is no clear explanation of what these latent factors are and why they perform well. In this w ork, we present Dirichlet Graph Variational Autoencoder (DGVAE) with graph cluster memberships as latent factors. Our study connects VAEs based graph generation and balanced graph cut, and provides a new way to understand and improve the internal mechanism of VAEs based graph generation. Specifically, we first interpret the reconstruction term of DGVAE as balanced graph cut in a principled way. Furthermore, motivated by the low pass characteristics in balanced graph cut, we propose a new variant of GNN named Heatts to encode the input graph into cluster memberships. Heatts utilizes the Taylor series for fast computation of heat kernels and has better low pass characteristics than Graph Convolutional Networks (GCN). Through experiments on graph generation and graph clustering, we demonstrate the effectiveness of our proposed framework.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا