ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial Symmetric Variational Autoencoder

85   0   0.0 ( 0 )
 نشر من قبل Zhe Gan
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A new form of variational autoencoder (VAE) is developed, in which the joint distribution of data and codes is considered in two (symmetric) forms: ($i$) from observed data fed through the encoder to yield codes, and ($ii$) from latent codes drawn from a simple prior and propagated through the decoder to manifest data. Lower bounds are learned for marginal log-likelihood fits observed data and latent codes. When learning with the variational bound, one seeks to minimize the symmetric Kullback-Leibler divergence of joint density functions from ($i$) and ($ii$), while simultaneously seeking to maximize the two marginal log-likelihoods. To facilitate learning, a new form of adversarial training is developed. An extensive set of experiments is performed, in which we demonstrate state-of-the-art data reconstruction and generation on several image benchmark datasets.



قيم البحث

اقرأ أيضاً

This paper proposes Dirichlet Variational Autoencoder (DirVAE) using a Dirichlet prior for a continuous latent variable that exhibits the characteristic of the categorical probabilities. To infer the parameters of DirVAE, we utilize the stochastic gr adient method by approximating the Gamma distribution, which is a component of the Dirichlet distribution, with the inverse Gamma CDF approximation. Additionally, we reshape the component collapsing issue by investigating two problem sources, which are decoder weight collapsing and latent value collapsing, and we show that DirVAE has no component collapsing; while Gaussian VAE exhibits the decoder weight collapsing and Stick-Breaking VAE shows the latent value collapsing. The experimental results show that 1) DirVAE models the latent representation result with the best log-likelihood compared to the baselines; and 2) DirVAE produces more interpretable latent values with no collapsing issues which the baseline models suffer from. Also, we show that the learned latent representation from the DirVAE achieves the best classification accuracy in the semi-supervised and the supervised classification tasks on MNIST, OMNIGLOT, and SVHN compared to the baseline VAEs. Finally, we demonstrated that the DirVAE augmented topic models show better performances in most cases.
User attributes, such as gender and education, face severe incompleteness in social networks. In order to make this kind of valuable data usable for downstream tasks like user profiling and personalized recommendation, attribute inference aims to inf er users missing attribute labels based on observed data. Recently, variational autoencoder (VAE), an end-to-end deep generative model, has shown promising performance by handling the problem in a semi-supervised way. However, VAEs can easily suffer from over-fitting and over-smoothing when applied to attribute inference. To be specific, VAE implemented with multi-layer perceptron (MLP) can only reconstruct input data but fail in inferring missing parts. While using the trending graph neural networks (GNNs) as encoder has the problem that GNNs aggregate redundant information from neighborhood and generate indistinguishable user representations, which is known as over-smoothing. In this paper, we propose an attribute textbf{Infer}ence model based on textbf{A}dversarial textbf{VAE} (Infer-AVAE) to cope with these issues. Specifically, to overcome over-smoothing, Infer-AVAE unifies MLP and GNNs in encoder to learn positive and negative latent representations respectively. Meanwhile, an adversarial network is trained to distinguish the two representations and GNNs are trained to aggregate less noise for more robust representations through adversarial training. Finally, to relieve over-fitting, mutual information constraint is introduced as a regularizer for decoder, so that it can make better use of auxiliary information in representations and generate outputs not limited by observations. We evaluate our model on 4 real-world social network datasets, experimental results demonstrate that our model averagely outperforms baselines by 7.0$%$ in accuracy.
Variational autoencoder (VAE) is a widely used generative model for learning latent representations. Burda et al. in their seminal paper showed that learning capacity of VAE is limited by over-pruning. It is a phenomenon where a significant number of latent variables fail to capture any information about the input data and the corresponding hidden units become inactive. This adversely affects learning diverse and interpretable latent representations. As variational graph autoencoder (VGAE) extends VAE for graph-structured data, it inherits the over-pruning problem. In this paper, we adopt a model based approach and propose epitomic VGAE (EVGAE),a generative variational framework for graph datasets which successfully mitigates the over-pruning problem and also boosts the generative ability of VGAE. We consider EVGAE to consist of multiple sparse VGAE models, called epitomes, that are groups of latent variables sharing the latent space. This approach aids in increasing active units as epitomes compete to learn better representation of the graph data. We verify our claims via experiments on three benchmark datasets. Our experiments show that EVGAE has a better generative ability than VGAE. Moreover, EVGAE outperforms VGAE on link prediction task in citation networks.
101 - Jia Li , Tomasyu Yu , Jiajin Li 2020
Graph Neural Networks (GNNs) and Variational Autoencoders (VAEs) have been widely used in modeling and generating graphs with latent factors. However, there is no clear explanation of what these latent factors are and why they perform well. In this w ork, we present Dirichlet Graph Variational Autoencoder (DGVAE) with graph cluster memberships as latent factors. Our study connects VAEs based graph generation and balanced graph cut, and provides a new way to understand and improve the internal mechanism of VAEs based graph generation. Specifically, we first interpret the reconstruction term of DGVAE as balanced graph cut in a principled way. Furthermore, motivated by the low pass characteristics in balanced graph cut, we propose a new variant of GNN named Heatts to encode the input graph into cluster memberships. Heatts utilizes the Taylor series for fast computation of heat kernels and has better low pass characteristics than Graph Convolutional Networks (GCN). Through experiments on graph generation and graph clustering, we demonstrate the effectiveness of our proposed framework.
Variation Autoencoder (VAE) has become a powerful tool in modeling the non-linear generative process of data from a low-dimensional latent space. Recently, several studies have proposed to use VAE for unsupervised clustering by using mixture models t o capture the multi-modal structure of latent representations. This strategy, however, is ineffective when there are outlier data samples whose latent representations are meaningless, yet contaminating the estimation of key major clusters in the latent space. This exact problem arises in the context of resting-state fMRI (rs-fMRI) analysis, where clustering major functional connectivity patterns is often hindered by heavy noise of rs-fMRI and many minor clusters (rare connectivity patterns) of no interest to analysis. In this paper we propose a novel generative process, in which we use a Gaussian-mixture to model a few major clusters in the data, and use a non-informative uniform distribution to capture the remaining data. We embed this truncated Gaussian-Mixture model in a Variational AutoEncoder framework to obtain a general joint clustering and outlier detection approach, called tGM-VAE. We demonstrated the applicability of tGM-VAE on the MNIST dataset and further validated it in the context of rs-fMRI connectivity analysis.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا